首页> 外文期刊>Neurocomputing >Object-oriented subspace analysis for airborne hyperspectral remote sensing imagery
【24h】

Object-oriented subspace analysis for airborne hyperspectral remote sensing imagery

机译:机载高光谱遥感影像的面向对象子空间分析

获取原文
获取原文并翻译 | 示例

摘要

An object-oriented mapping approach based on subspace analysis of airborne hyperspectral images was investigated in this paper. Hyperspectral features were extracted based on subspace learning approaches, in order to reduce the redundancy of spectral space and extract the characteristic images for the further object-oriented classification. In this paper, three kinds of spectral feature extraction (FE) methods were utilized to obtain the subspace of airborne hyperspectral data: (1) unsupervised FE, such as PCA (principal component analysis), ICA (independent component analysis) and MNF (maximum noise fraction); (2) supervised FE, e.g. DBFE (decision boundary feature extraction), DAFE (discriminant analysis feature extraction) and NWFE (nonparametric weighted feature extraction); and (3) linear mixture analysis. Afterwards, the extracted subspace features were fed into the object-based classification system. The FNEA (fractal net evolution approach) was utilized to extract objects from the subspace images and SVM (support vector machines) was then used to classify the object-based features. Experiments were conducted on two airborne hyperspectral datasets: (1) the AVIRIS dataset over the northwest Indiana's Pine with 220 spectral bands (agricultural region), and (2) the ROSIS dataset over Pavia University, northern of Italy with 102 spectral bands (urban region). Results revealed that the proposed object-based approach could give significantly higher accuracies than the traditional pixel-based subspace classification.
机译:研究了基于机载高光谱图像子空间分析的面向对象映射方法。基于子空间学习方法提取高光谱特征,以减少光谱空间的冗余并提取特征图像以用于进一步的面向对象的分类。本文采用三种光谱特征提取(FE)方法获得机载高光谱数据的子空间:(1)无监督FE,例如PCA(主成分分析),ICA(独立成分分析)和MNF(最大)。噪声分数); (2)受监督的FE,例如DBFE(决策边界特征提取),DAFE(判别分析特征提取)和NWFE(非参数加权特征提取); (3)线性混合分析。然后,将提取的子空间特征输入到基于对象的分类系统中。利用FNEA(分形网络演化方法)从子空间图像中提取对象,然后使用SVM(支持向量机)对基于对象的特征进行分类。在两个机载高光谱数据集上进行了实验:(1)印第安纳州西北部的松树上的AVIRIS数据集具有220个光谱带(农业区域),以及(2)意大利北部的帕维亚大学上的ROSIS数据集具有102个光谱带(城市区域) )。结果表明,与传统的基于像素的子空间分类相比,基于对象的方法具有更高的准确性。

著录项

  • 来源
    《Neurocomputing》 |2010年第6期|927-936|共10页
  • 作者

    Liangpei Zhang; Xin Huang;

  • 作者单位

    The State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, PR China;

    The State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, PR China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    hyperspectral images; subspace analysis; feature extraction; object-oriented analysis; texture;

    机译:高光谱图像;子空间分析;特征提取;面向对象的分析;质地;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号