首页> 外文期刊>Neurocomputing >A cross-entropy-based population-learning algorithm for discrete-continuous scheduling with continuous resource discretisation
【24h】

A cross-entropy-based population-learning algorithm for discrete-continuous scheduling with continuous resource discretisation

机译:具有连续资源离散化的离散连续调度的基于交叉熵的种群学习算法

获取原文
获取原文并翻译 | 示例

摘要

The problem of scheduling nonpreemtable tasks on parallel identical machines under constraint on discrete resource and requiring, additionally, renewable continuous resource to minimize the schedule length is considered in the paper. A continuous resource is divisible continuously and is allocated to tasks from given intervals in amounts unknown in advance. Task processing rate depends on the allocated amount of the continuous resource. To eliminate time-consuming optimal continuous resource allocation, a problem Θ_z with continuous resource discretisation is introduced. Because Θ_z is NP-hard a population-learning algorithm (PLA2) is proposed to tackle the problem. PLA2 is a population-based approach which takes advantage of the features common to the social education system rather than to the evolutionary processes. The proposed approach is based on the idea of constructing the hybrid algorithm integrating different optimization techniques complementing each other and producing a synergetic effect. Experimental results proved that PLA2 excels known algorithms for solving the considered problem.
机译:本文考虑了在离散资源受限的情况下,在并行同一台机器上调度不可抢占任务的问题,此外还需要可再生连续资源以最大程度地减少调度时间。连续资源可以连续分割,并以给定间隔按预先未知的量分配给任务。任务处理率取决于连续资源的分配量。为了消除耗时的最佳连续资源分配,引入了具有连续资源离散化的问题Θ_z。由于Θ_z是NP难解的,因此提出了种群学习算法(PLA2)来解决该问题。 PLA2是一种基于人群的方法,它利用了社会教育系统而非进化过程所共有的功能。所提出的方法是基于构造混合算法的思想,该混合算法整合了彼此互补的不同优化技术,并产生了协同效应。实验结果证明,PLA2优于解决已知问题的已知算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号