首页> 外文期刊>Neurocomputing >Convolutive blind source separation by efficient blind deconvolution and minimal filter distortion
【24h】

Convolutive blind source separation by efficient blind deconvolution and minimal filter distortion

机译:通过有效的盲解卷积和最小的滤波器失真进行卷积盲源分离

获取原文
获取原文并翻译 | 示例

摘要

Convolutive blind source separation (BSS) usually encounters two difficulties-the filter indeterminacy in the recovered sources and the relatively high computational load. In this paper we propose an efficient method to convolutive BSS, by dealing with these two issues. It consists of two stages, namely, multichannel blind deconvolution (MBD) and learning the post-filters with the minimum filter distortion (MFD) principle. We present a computationally efficient approach to MBD in the first stage: a vector autoregression (VAR) model is first fitted to the data, admitting a closed-form solution and giving temporally independent errors; traditional independent component analysis (1CA) is then applied to these errors to produce the MBD results. In the second stage, the least linear reconstruction error (LLRE) constraint of the separation system, which was previously used to regularize the solutions to nonlinear ICA, enforces a MFD principle of the estimated mixing system for convolutive BSS. One can then easily learn the post-filters to preserve the temporal structure of the sources. We show that with this principle, each recovered source is approximately the principal component of the contributions of this source to all observations. Experimental results on both synthetic data and real room recordings show the good performance of this method.
机译:卷积盲源分离(BSS)通常会遇到两个困难-回收源中的滤波器不确定性和相对较高的计算负荷。在本文中,我们通过处理这两个问题提出了一种有效的卷积BSS方法。它包括两个阶段,即多通道盲解卷积(MBD)和学习具有最小滤波器失真(MFD)原理的后置滤波器。我们在第一阶段提出了一种计算有效的MBD方法:首先将向量自回归(VAR)模型拟合到数据,允许采用封闭形式的解决方案并给出与时间无关的错误;然后将传统的独立成分分析(1CA)应用于这些错误,以产生MBD结果。在第二阶段,分离系统的最小线性重构误差(LLRE)约束(以前用于规范化非线性ICA的解决方案)对卷积BSS实施了估计混合系统的MFD原理。然后,您可以轻松地学习后置滤波器,以保留源的时间结构。我们证明,利用这一原理,每个回收的来源大约都是该来源对所有观测值贡献的主要组成部分。综合数据和实际房间记录的实验结果表明,该方法具有良好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号