首页> 外文期刊>Neurocomputing >Audio-visual localization with hierarchical topographic maps: Modeling the superior colliculus
【24h】

Audio-visual localization with hierarchical topographic maps: Modeling the superior colliculus

机译:带有分层地形图的视听本地化:建模上丘

获取原文
获取原文并翻译 | 示例

摘要

A key attribute of the brain is its ability to seamlessly integrate sensory information to form a multisensory representation of the world. In early perceptual processing, the superior colliculus (SC) takes a leading role in integrating visual, auditory and somatosensory stimuli in order to direct eye movements. The SC forms a representation of multisensory space through a layering of retinotopic maps which are sensitive to different types of stimuli. These eye-centered topographic maps can adapt to crossmodal stimuli so that the SC can automatically shift our gaze, moderated by cortical feedback. In this paper we describe a neural network model of the SC consisting of a hierarchy of nine topographic maps that combine to form a multisensory retinotopic representation of audio-visual space. Our motivation is to evaluate whether a biologically plausible model of the SC can localize audio-visual inputs live from a camera and two microphones. We use spatial contrast and a novel form of temporal contrast for visual sensitivity, and interaural level difference for auditory sensitivity. Results are comparable with the performance observed in cats where coincident stimuli are accurately localized, while presentation of disparate stimuli causes a significant drop in performance. The benefit of crossmodal localization is shown by adding increasing amounts of noise to the visual stimuli to the point where audio-visual localization significantly out porforms visual-only localization. This work demonstrates how a novel, biologically motivated model of low level multisensory processing can be applied to practical, real-world input in real-time, while maintaining its comparability with biology.
机译:大脑的关键属性是其无缝整合感官信息以形成世界的多感官表示的能力。在早期的知觉处理中,上丘(SC)在整合视觉,听觉和体感刺激以指导眼球运动方面起着主导作用。 SC通过对不同类型的刺激敏感的视网膜位图的分层形成多感觉空间的表示。这些以眼睛为中心的地形图可以适应交叉模态的刺激,因此SC可以自动移动视线,并受到皮层反馈的控制。在本文中,我们描述了SC的神经网络模型,该模型由九个地形图的层次结构组成,这些地形图组合起来构成了视听空间的多感官视网膜代表。我们的动机是评估SC的生物学上合理的模型是否可以本地化来自摄像机和两个麦克风的视听输入。我们使用空间对比和一种新型的时间对比来提高视觉灵敏度,并使用听觉水平差异来提高听觉灵敏度。结果可与猫中观察到的表现相媲美,在猫中精确地定位了一致的刺激,而呈现出不同的刺激会导致性能显着下降。跨模式本地化的好处是通过向视觉刺激中添加越来越多的噪声,从而使视听本地化显着超出仅可视化本地化的形式而体现出来​​的。这项工作演示了如何将新颖的,具有生物学动机的低水平多感觉处理模型实时应用于实际的现实世界输入,同时保持其与生物学的可比性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号