首页> 外文期刊>Neurocomputing >Video super-resolution with 3D adaptive normalized convolution
【24h】

Video super-resolution with 3D adaptive normalized convolution

机译:具有3D自适应归一化卷积的视频超分辨率

获取原文
获取原文并翻译 | 示例

摘要

The classic multi-image-based super-resolution (SR) methods typically take global motion pattern to produce one or multiple high-resolution (HR) versions from a set of low-resolution (LR) images. However, due to the influence of aliasing and noise, it is difficult to obtain highly accurate registration with sub-pixel accuracy. Moreover, in practical applications, the global motion pattern is rarely found in the real LR inputs. In this paper, to surmount or at least reduce the aforementioned problems, we develop a novel SR framework for video sequence by extending the traditional 2-dimentional (2D) normalized convolution (NC) to 3-dimentional (3D) case. In the proposed framework, to bypass explicit motion estimation, we estimate a target pixel by taking a weighted average of pixels from its neighborhood. We further up-scale the input video sequence in temporal dimension based on the extended 3D NC and hence more video frames can be generated. Fundamental experiments demonstrate the effectiveness of the proposed SR framework both quantitatively and perceptually.
机译:经典的基于多图像的超分辨率(SR)方法通常采用全局运动模式,以从一组低分辨率(LR)图像中生成一个或多个高分辨率(HR)版本。但是,由于混叠和噪声的影响,难以获得具有亚像素精度的高精度配准。此外,在实际应用中,全局运动模式很少在实际的LR输入中找到。在本文中,为了克服或至少减少上述问题,我们通过将传统的2维(2D)归一化卷积(NC)扩展到3维(3D)情况,开发了一种新颖的视频序列SR框架。在提出的框架中,为了绕过显式运动估计,我们通过从目标邻域获取像素的加权平均值来估计目标像素。我们基于扩展的3D NC在时间维度上进一步放大了输入视频序列,因此可以生成更多的视频帧。基本实验从数量和感知上证明了所提出的SR框架的有效性。

著录项

  • 来源
    《Neurocomputing》 |2012年第2012期|p.140-151|共12页
  • 作者单位

    School of Electronic Engineering, Xidian University, Xi'an 710071, China;

    School of Electronic Engineering, Xidian University, Xi'an 710071, China;

    Center for OPTical IMagery Analysis and Learning (OPTIMAL), State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China;

    School of Electronic Engineering, Xidian University, Xi'an 710071, China;

    Centre for Quantum Computation & Intelligent Systems and the Faculty of Engineering & Information Technology, University of Technology, Sydney, NSW 2007, Australia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    normalized convolution (NC); motion estimation; video super-resolution (ST);

    机译:标准化卷积(NC);运动估计;视频超分辨率(ST);

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号