首页> 外文期刊>Neurocomputing >Image multi-thresholding by combining the lattice Boltzmann model and a localized level set algorithm
【24h】

Image multi-thresholding by combining the lattice Boltzmann model and a localized level set algorithm

机译:结合格子Boltzmann模型和局部水平集算法进行图像多阈值处理

获取原文
获取原文并翻译 | 示例

摘要

During the last decades, the development of high dimensional large-scale imaging devices increases the need of fast, accurate and parallelizable segmentation methods. Due to its intrinsic advantages such as its ability to handle complex shapes, the level set method (LSM) has been widely used. Nevertheless, the method is computational expensive in image segmentation, which limits its use in real-time systems and volume images segmentation. In this paper we propose an adaptive image multi-thresholding method which uses a localized level set method to detect automatically the best thresholds values from some initial given values. Instead to solve the level set equation (LSE) by using the traditional methods based on some finite difference or finite volume, we use the highly parallelizable lattice Boltzmann method (LBM). All the more, the method is faster since it is solved in histogram domain rather than the pixel domain. The time complexity is therefore considerably reduced since the number of gray levels is generally much smaller than the size of the image. The method is efficient, highly parallelizable and faster than those based on the LSM. Experiments on synthetic, real-world, medical and man-made object images demonstrate the performance of the proposed method.
机译:在过去的几十年中,高尺寸大规模成像设备的发展增加了对快速,准确和可并行化的分割方法的需求。由于其固有的优势(如处理复杂形状的能力),水平集方法(LSM)已被广泛使用。然而,该方法在图像分割中计算量大,这限制了其在实时系统和体积图像分割中的使用。在本文中,我们提出了一种自适应图像多阈值方法,该方法使用局部水平集方法从某些初始给定值中自动检测最佳阈值。取而代之的是使用基于有限差分或有限体积的传统方法来求解水平集方程(LSE),而是使用高度可并行化的格子Boltzmann方法(LBM)。而且,该方法更快,因为它是在直方图域而不是像素域中求解的。由于灰度级的数量通常比图像的大小小得多,因此时间复杂度大大降低了。该方法比基于LSM的方法高效,高度可并行化且速度更快。在合成,真实世界,医学和人造对象图像上进行的实验证明了该方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号