首页> 外文期刊>Neurocomputing >Multi-fault classification based on wavelet SVM with PSO algorithm to analyze vibration signals from rolling element bearings
【24h】

Multi-fault classification based on wavelet SVM with PSO algorithm to analyze vibration signals from rolling element bearings

机译:基于小波SVM和PSO算法的多故障分类分析滚动轴承的振动信号

获取原文
获取原文并翻译 | 示例

摘要

Condition monitoring and fault diagnosis of rolling element bearings timely and accurately is very important to ensure the reliable operation of rotating machinery. In this paper, a multi-fault classification model based on the kernel method of support vector machines (SVM) and wavelet frame, wavelet basis were introduced to construct the kernel function of SVM, and wavelet support vector machine (WSVM) is presented. To seek the optimal parameters of WSVM, particle swarm optimization (PSO) is applied to optimize unknown parameters of WSVM. In this work, the vibration signals measured from rolling element bearings are preprocessed using empirical model decomposition (EMD). Moreover, a distance evaluation technique is performed to remove the redundant and irrelevant information and select the salient features for the classification process. Hence, a relatively new hybrid intelligent fault detection and classification method based on EMD, distance evaluation technique and WSVM with PSO is proposed. This method is validated on a rolling element bearing test bench and then applied to the bearing fault diagnosis for electric locomotives. Compared with the commonly used SVM, the WSVM can achieve a greater accuracy. The results indicated that the proposed method can reliably identify different fault patterns of rolling element bearings based on the vibration signals.
机译:及时准确地进行滚动轴承的状态监测和故障诊断,对于保证旋转机械的可靠运行非常重要。本文提出了一种基于支持向量机和小波框架核方法的多故障分类模型,引入小波基础构造支持向量机的核函数,并提出了小波支持向量机(WSVM)。为了寻找WSVM的最佳参数,应用粒子群算法(PSO)来优化WSVM的未知参数。在这项工作中,使用经验模型分解(EMD)对从滚动轴承测量的振动信号进行预处理。此外,执行距离评估技术以去除冗余和不相关的信息并选择用于分类过程的显着特征。因此,提出了一种基于EMD,距离评估技术和带PSO的WSVM的混合智能故障检测与分类方法。该方法在滚动轴承试验台上得到验证,然后应用于电力机车轴承故障诊断。与常用的SVM相比,WSVM可以实现更高的准确性。结果表明,该方法能够基于振动信号可靠地识别滚动轴承的不同故障模式。

著录项

  • 来源
    《Neurocomputing》 |2013年第1期|399-410|共12页
  • 作者单位

    State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China;

    State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China;

    State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China;

    State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China;

    State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    fault diagnosis; rolling element bearings; wavelet support vector machine; particle swarm optimization; empirical model decomposition; distance evaluation technique;

    机译:故障诊断;滚动轴承;小波支持向量机粒子群优化;实证模型分解;距离评估技术;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号