首页> 外文期刊>Neurocomputing >Evaluation and modeling of depth feature incorporated visual attention for salient object segmentation
【24h】

Evaluation and modeling of depth feature incorporated visual attention for salient object segmentation

机译:结合视觉注意力的深度特征评估和建模,用于显着对象分割

获取原文
获取原文并翻译 | 示例

摘要

Visual attention has been used widely, such as region of interest (ROI) based image compression, imitating fixation region and salient object segmentation. The output saliency map range from spotlight map to object-based map which is related to different applications. We compare previously proposed saliency models and propose a new depth feature incorporated saliency model focusing on suppression of background saliency through piecewise function. We also produce an object-contour based ground truth database in order to evaluate several depth feature incorporated saliency models. Our method outperforms existing depth feature combination methods on the precision rate, when evaluated using the ground truth. At the same time, the effectiveness of using the depth feature in assisting salient object segmentation is verified.
机译:视觉注意力已被广泛使用,例如基于感兴趣区域(ROI)的图像压缩,模仿注视区域和显着对象分割。输出显着性地图的范围从聚光灯地图到与不同应用程序相关的基于对象的地图。我们比较了以前提出的显着性模型,并提出了一个新的深度特征合并显着性模型,该模型着重于通过分段函数抑制背景显着性。我们还产生了一个基于对象轮廓的地面真相数据库,以便评估多个结合了深度特征的显着性模型。当使用地面真实性进行评估时,我们的方法在准确率上优于现有的深度特征组合方法。同时,验证了使用深度特征协助显着对象分割的有效性。

著录项

  • 来源
    《Neurocomputing》 |2013年第23期|24-33|共10页
  • 作者单位

    School of Electronic Information Engineering, Tianjin University, China;

    School of Electronic Information Engineering, Tianjin University, China;

    School of Electronic Information Engineering, Tianjin University, China;

    School of Electronic Information Engineering, Tianjin University, China;

    School of Electronic Information Engineering, Tianjin University, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Stereoscopic visual attention; Region of interest (ROI); Depth; Object segmentation;

    机译:立体视觉注意;感兴趣区域(ROI);深度;对象分割;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号