首页> 外文期刊>Neurocomputing >A novel two-stage weak classifier selection approach for adaptive boosting for cascade face detector
【24h】

A novel two-stage weak classifier selection approach for adaptive boosting for cascade face detector

机译:一种新颖的两级弱分类器选择方法,用于级联人脸检测器的自适应增强

获取原文
获取原文并翻译 | 示例

摘要

It is well-known for AdaBoost to select out the optimal weak classifier with the least sample-weighted error rate, which might be suboptimal for minimizing the naive error rate. In this paper, a novel variant of AdaBoost named OtBoost is proposed to learn optimal thresholded node classifiers for cascade face detector. In OtBoost, a two-stage weak classifier selection approach based on adaptive boosting framework is applied to minimize both the sample-weighted error rate and the optimal-thresholded multi-set class-weighted error rate. Besides, a new sample set called selection set is also applied to prevent overfitting on the training set. Several upright frontal cascade face detectors are learned, which shows that the OtBoost strong classifiers have much better convergence ability than the AdaBoost ones with the cost of slightly worse generalization ability. Some OtBoost based cascade face detectors have acceptable performance on the CMU + MIT upright frontal face test set.
机译:众所周知,AdaBoost会选择具有最小样本加权错误率的最佳弱分类器,这对于将天真的错误率最小化可能不是最佳的。在本文中,提出了一种名为OtBoost的AdaBoost新型变体,以学习级联人脸检测器的最佳阈值节点分类器。在OtBoost中,采用了基于自适应提升框架的两阶段弱分类器选择方法,以最小化样本加权错误率和最优阈值多集类别加权错误率。此外,还应用了一个称为选择集的新样本集,以防止过度拟合训练集。学会了几个直立的正面叶栅级联面部检测器,这表明OtBoost强分类器具有比AdaBoost分类器更好的收敛能力,但代价是泛化能力稍差。一些基于OtBoost的级联面部检测器在CMU + MIT立式正面检测仪上具有可接受的性能。

著录项

  • 来源
    《Neurocomputing》 |2013年第20期|122-135|共14页
  • 作者单位

    College of Computer, National University of Defense Technology, Changsha, Hunan, China;

    College of Computer, National University of Defense Technology, Changsha, Hunan, China;

    College of Information Science and Engineering, Hunan University, Changsha, Hunan. China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    AdaBoost; Face detection; Weak classifier selection;

    机译:AdaBoost;人脸检测分类器选择不足;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号