首页> 外文期刊>Neurocomputing >Research on computational intelligence algorithms with adaptive learning approach for scheduling problems with batch processing machines
【24h】

Research on computational intelligence algorithms with adaptive learning approach for scheduling problems with batch processing machines

机译:自适应学习方法在批处理机调度问题中的计算智能算法研究

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a general kind of flow shop scheduling problem in a manufacturing supply chain where a group of jobs can be processed on a machine simultaneously. Examples of such environment occur in chemical processes, semiconductor industries, electronics manufacturing, wafer fabrication, and pharmaceutical industries, etc. In this problem not only should the sequence of jobs be determined but also the formation of batches is considered as a new variable in the model. The problem under investigation is NP-hard for cost of total earliness; total tardiness and makespan as objectives. During recent years, the nature-inspired computational intelligent algorithms are successfully employed for achieving the optimum design of supply chain structures. Hence, three effective computational intelligence algorithms including a hybrid genetic algorithm (HGA), a hybrid simulated annealing (HSA) and an improved discrete particle swarm optimization (PSO) algorithm are developed and analyzed for solving the batch processing machine scheduling problem addressed in current paper. Furthermore, an adaptive learning approach which is inspired by the training weights in artificial neural network (ANN) environment is embedded into the algorithms so as to enhance the quality of solutions. An extensive simulation experiments is conducted and the performance of algorithms is compared with the traditional genetic algorithm, particle swarm optimization, some well known dispatching rules such as STPT, LTPT, SBMPT, LBMPT, EDD, MST and also with the powerful commercial solver LINGO. The attained results show the appropriate performance of our algorithms.
机译:本文提出了制造供应链中的一种一般的流水车间调度问题,其中可以在机器上同时处理一组作业。这种环境的例子出现在化学过程,半导体工业,电子制造,晶片制造和制药工业等中。在这个问题中,不仅应该确定作业顺序,而且批次的形成也被认为是新的变量。模型。正在调查的问题是NP很难获得全部早期成本。总拖延和制造期为目标。近年来,受自然启发的计算智能算法已成功用于实现供应链结构的最佳设计。因此,开发并分析了三种有效的计算智能算法,包括混合遗传算法(HGA),混合模拟退火(HSA)和改进的离散粒子群优化(PSO)算法,以解决当前解决的批处理机调度问题。此外,在算法中嵌入了一种自适应学习方法,该方法受人工神经网络(ANN)环境中的训练权重启发,从而提高了解决方案的质量。进行了广泛的仿真实验,并将算法的性能与传统的遗传算法,粒子群优化,一些著名的调度规则(例如STPT,LTPT,​​SBMPT,LBMPT,EDD,MST)以及功能强大的商用求解器LINGO进行了比较。所得结果表明了我们算法的适当性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号