首页> 外文期刊>Neurocomputing >Incremental kernel spectral clustering for online learning of non-stationary data
【24h】

Incremental kernel spectral clustering for online learning of non-stationary data

机译:在线增量学习非平稳数据的核谱聚类

获取原文
获取原文并翻译 | 示例

摘要

In this work a new model for online clustering named Incremental kernel spectral clustering (IKSC) is presented. It is based on kernel spectral clustering (KSC), a model designed in the Least Squares Support Vector Machines (LS-SVMs) framework, with primal-dual setting. The IKSC model is developed to quickly adapt itself to a changing environment in order to learn evolving clusters with high accuracy. In contrast with other existing incremental spectral clustering approaches, the eigen-updating is performed in a model-based manner, by exploiting one of the Karush-Kuhn-Tucker (KKT) optimality conditions of the KSC problem. We test the capacities of IKSC with some experiments conducted on computer-generated data and a real-world data-set of PM_(10) concentrations registered during a pollution episode occurred in Northern Europe in January 2010. We observe that our model is able to precisely r,ecognize the dynamics of shifting patterns in a non-stationary context.
机译:在这项工作中,提出了一种新的在线聚类模型,称为增量核谱聚类(IKSC)。它基于内核频谱聚类(KSC),该模型是在最小二乘支持向量机(LS-SVM)框架中设计的,具有原始对偶设置。开发IKSC模型是为了快速适应不断变化的环境,以便以高精度学习不断发展的集群。与其他现有的增量频谱聚类方法相反,通过利用KSC问题的Karush-Kuhn-Tucker(KKT)最优性条件之一,以基于模型的方式执行特征更新。我们通过对计算机生成的数据和2010年1月在北欧发生的污染事件中记录的PM_(10)浓度的真实数据集进行的一些实验,测试了IKSC的能力。我们观察到我们的模型能够恰恰是r,它可以识别出在非平稳环境中变化模式的动态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号