首页> 外文期刊>Neurocomputing >Robust state estimation for discrete-time neural networks with mixed time-delays, linear fractional uncertainties and successive packet dropouts
【24h】

Robust state estimation for discrete-time neural networks with mixed time-delays, linear fractional uncertainties and successive packet dropouts

机译:具有混合时滞,线性分数不确定性和连续数据包丢失的离散时间神经网络的鲁棒状态估计

获取原文
获取原文并翻译 | 示例

摘要

This paper is concerned with the robust state estimation problem for a class of discrete-time delayed neural networks with linear fractional uncertainties (LFUs) and successive packet dropouts (SPDs). The mixed time delays (MTDs) consisting of both discrete time-delays and infinite distributed delays enter into the model of the addressed neural networks. A Bernoulli distributed white sequence with a known conditional probability is introduced to govern the random occurrence of the SPDs. The main purpose of the problem under consideration is to design a state estimator such that the dynamics of the estimation error is globally asymptotically stable in the mean square. By using stochastic analysis and Lyapunov stability theory, the desired state estimator is designed to be robust against LFUs and SPDs. Finally, a simulation example is provided to show the effectiveness of the proposed state estimator design scheme.
机译:本文涉及一类具有线性分数不确定性(LFU)和连续数据包丢失(SPD)的离散时间延迟神经网络的鲁棒状态估计问题。由离散时间延迟和无限分布式延迟组成的混合时间延迟(MTD)进入寻址的神经网络模型。引入具有已知条件概率的伯努利分布的白色序列来控制SPD的随机出现。要考虑的问题的主要目的是设计一种状态估计器,以使估计误差的动态在均方根上全局渐近稳定。通过使用随机分析和Lyapunov稳定性理论,将所需状态估计器设计为对LFU和SPD具有鲁棒性。最后,提供了一个仿真示例来说明所提出的状态估计器设计方案的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号