首页> 外文期刊>Neurocomputing >Interactive segmentation based on iterative learning for multiple-feature fusion
【24h】

Interactive segmentation based on iterative learning for multiple-feature fusion

机译:基于迭代学习的交互式分割用于多特征融合

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a novel interactive segmentation method based on conditional random field (CRF) model to utilize the location and color information contained in user input. The CRF is configured with the optimal weights between two features, which are the color Gaussian Mixture Model (GMM) and probability model of location information. To construct the CRF model, we propose a method to collect samples for the cuttraining tasks of learning the optimal weights on a single image's basis and updating the parameters of features. To refine the segmentation results iteratively, our method applies the active learning strategy to guide the process of CRF model updating or guide users to input minimal training data for training the optimal weights and updating the parameters of features. Experimental results show that the proposed method demonstrates qualitative and quantitative improvement compared with the state-of-the-art interactive segmentation methods. The proposed method is also a convenient tool for interactive object segmentation.
机译:本文提出了一种基于条件随机场(CRF)模型的交互式交互式分割方法,以利用用户输入中包含的位置和颜色信息。 CRF配置有两个特征之间的最佳权重,这两个特征是颜色高斯混合模型(GMM)和位置信息的概率模型。为了构建CRF模型,我们提出了一种方法,用于收集用于训练任务的样本,该训练任务是在单个图像的基础上学习最佳权重并更新特征参数。为了迭代地细化分割结果,我们的方法采用主动学习策略来指导CRF模型的更新过程,或者指导用户输入最少的训练数据来训练最佳权重和更新特征参数。实验结果表明,与最新的交互式分割方法相比,该方法在质量和数量上都有改进。所提出的方法也是用于交互式对象分割的方便工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号