首页> 外文期刊>Neurocomputing >A clonal selection based approach to statistical brain voxel classification in magnetic resonance images
【24h】

A clonal selection based approach to statistical brain voxel classification in magnetic resonance images

机译:基于克隆选择的磁共振图像中脑立体素分类统计方法

获取原文
获取原文并翻译 | 示例

摘要

Statistical classification of voxels in brain magnetic resonance (MR) images into major tissue types plays an important role in neuroscience research and clinical practices, in which model estimation is an essential step. Despite their prevalence, traditional techniques, such as the expectation-maximization (EM) algorithm and genetic algorithm (GA), have inherent limitations, and may result in less-accurate classification. In this paper, we introduce the immune-inspired clonal selection algorithm (CSA) to the maximum likelihood estimation of the Gaussian mixture model (GMM), and thus propose the GMM-CSA algorithm for automated voxel classification in brain MR images. This algorithm achieves simultaneous voxel classification and bias field correction in a three-stage iterative process under the CSA framework. At each iteration, a population of admissible model parameters, voxel labels and estimated bias field are updated. To explore the prior anatomical knowledge, we also construct a probabilistic brain atlas for each MR study and incorporate the atlas into the classification process. The GMM-CSA algorithm has been compared to five state-of-the-art brain MR image segmentation approaches on both simulated and clinical data Our results show that the proposed algorithm is capable of classifying voxels in brain MR images into major tissue types more accurately.
机译:脑磁共振(MR)图像中体素的统计分类为主要组织类型在神经科学研究和临床实践中起着重要作用,其中模型估计是必不可少的步骤。尽管它们普遍存在,但是传统技术(例如期望最大化(EM)算法和遗传算法(GA))具有固有的局限性,并且可能导致分类不准确。在本文中,我们将免疫启发式克隆选择算法(CSA)引入到高斯混合模型(GMM)的最大似然估计中,从而提出了用于脑MR图像中自动体素分类的GMM-CSA算法。该算法在CSA框架下的三阶段迭代过程中实现了同时的体素分类和偏置场校正。每次迭代时,都会更新一组可接受的模型参数,体素标签和估计的偏差字段。为了探索先前的解剖学知识,我们还为每个MR研究构建了概率脑图集,并将该图集纳入了分类过程。 GMM-CSA算法已在模拟和临床数据上与五种最新的脑部MR图像分割方法进行了比较我们的结果表明,该算法能够将脑部MR图像中的体素更准确地分类为主要组织类型。

著录项

  • 来源
    《Neurocomputing》 |2014年第25期|122-131|共10页
  • 作者单位

    Biomedical and Multimedia Information Technology (BMIT) Research Group, School of Information Technologies, The University of Sydney, NSW 2006, Australia;

    Biomedical and Multimedia Information Technology (BMIT) Research Group, School of Information Technologies, The University of Sydney, NSW 2006, Australia ,Shaanxi Provincial Key Lab of Speech & Image Information Processing (SAIIP), School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China ,Department of Molecular Imaging, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia;

    Biomedical and Multimedia Information Technology (BMIT) Research Group, School of Information Technologies, The University of Sydney, NSW 2006, Australia ,Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Brain tissue classification; Bias field correction; Magnetic resonance imaging; Gaussian mixture model (GMM); Clone selection algorithm (CSA);

    机译:脑组织分类;偏置场校正;磁共振成像;高斯混合模型(GMM);克隆选择算法(CSA);

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号