首页> 外文期刊>Neurocomputing >Semi-supervised learning via sparse model
【24h】

Semi-supervised learning via sparse model

机译:稀疏模型的半监督学习

获取原文
获取原文并翻译 | 示例

摘要

Graph-based Semi-Supervised Learning (SSL) methods are the widely used SSL methods due to their high accuracy. They can well meet the manifold assumption with high computational cost, but don't meet the cluster assumption. In this paper, we propose a Semi-supervised learning via SPArse (SSPA) model. Since SSPA uses sparse matrix multiplication to depict the adjacency relations among samples, SSPA can approximate low dimensional manifold structure of samples with lower computational complexity than these graph-based SSL methods. Each column of this sparse matrix corresponds to one sparse representation of a sample. The rational is that the inner product of sparse representations can also be sparse under certain constraint. Since the dictionary in the SSPA model can depict the distribution of the entire samples, the sparse representation of a sample encodes its spatial location information. Therefore, in the SSPA model the manifold structure of samples is computed via their locations in the intrinsic geometry of the distribution instead of their feature vectors. In order to meet the cluster assumption, we propose an structured dictionary learning algorithm to explicitly reveal the cluster structure of the dictionary. We develop the SSPA algorithms with the structured dictionary besides non-structured one, and experiments show that our methods are efficient and outperform state-of-the-art graph-based SSL methods.
机译:基于图的半监督学习(SSL)方法由于具有很高的准确性而被广泛使用。它们可以以较高的计算成本很好地满足流形假设,但不能满足聚类假设。在本文中,我们提出了一种通过SPArse(SSPA)模型进行的半监督学习。由于SSPA使用稀疏矩阵乘法来描述样本之间的邻接关系,因此SSPA可以以比这些基于图的SSL方法更低的计算复杂度来近似样本的低维流形结构。该稀疏矩阵的每一列对应于一个样本的一个稀疏表示。合理的原因是,在一定约束下,稀疏表示的内积也可以是稀疏的。由于SSPA模型中的词典可以描述整个样本的分布,因此样本的稀疏表示将对其空间位置信息进行编码。因此,在SSPA模型中,通过样本在分布固有几何中的位置而不是特征向量来计算样本的流形结构。为了满足聚类假设,我们提出了一种结构化的字典学习算法来明确揭示字典的聚类结构。除了使用非结构化字典之外,我们还使用结构化字典开发了SSPA算法,并且实验表明,我们的方法是高效的,并且性能优于基于图形的最新SSL方法。

著录项

  • 来源
    《Neurocomputing》 |2014年第5期|124-131|共8页
  • 作者单位

    Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China,Graduate University of Chinese Academy of Sciences, Beijing 100190, China;

    Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China;

    Institute for Infocomm Research, A*STAR, Singapore 138632, Singapore;

    Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China;

    Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Manifold structure; Cluster structure; Semi-supervised learning; Sparse model;

    机译:歧管结构;集群结构;半监督学习;稀疏模型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号