首页> 外文期刊>Neurocomputing >Performance Improved Iteration-Free Artificial Neural Networks for Abnormal Magnetic Resonance Brain Image Classification
【24h】

Performance Improved Iteration-Free Artificial Neural Networks for Abnormal Magnetic Resonance Brain Image Classification

机译:性能改进的无迭代人工神经网络用于磁共振脑图像异常分类

获取原文
获取原文并翻译 | 示例

摘要

Image classification is one of the typical computational applications widely used in the medical field especially for abnormality detection in Magnetic Resonance (MR) brain images. The automated image classification systems used for such applications must be significantly efficient in terms of accuracy since false detection may lead to fatal results. Another requirement is the high convergence rate which accounts for the practical feasibility of the system. Among the automated systems, Artificial Neural Network (ANN) is gaining significant positions for solving computational problems. Besides multiple advantages, there are also few drawbacks associated with the neural networks which are unnoticed for most of the applications. The main drawback is that the ANN which yields high accuracy requires high convergence time period and the ANN which are much quicker are usually inaccurate. Hence, there is a significant necessity for ANN which satisfies the criteria of high convergence rate and accuracy simultaneously. In this work, this drawback is tackled by proposing two novel neural networks namely Modified Counter Propagation Neural Network (MCPN) and Modified Kohonen Neural Network (MKNN). These networks are framed by performing modifications in the training methodology of conventional CPN and Kohonen networks. The main concept of this work is to make the ANN iteration-free which ultimately improves the convergence rate besides yielding accurate results. The performance of these networks are analysed in the context of abnormal brain image classification. Experimental results show promising results for the proposed networks in terms of the performance measures.
机译:图像分类是医学领域中广泛使用的典型计算应用之一,尤其是用于磁共振(MR)脑图像中的异常检测。用于此类应用的自动图像分类系统在准确性方面必须非常有效,因为错误的检测可能会导致致命的结果。另一个要求是高收敛速度,这说明了系统的实际可行性。在自动化系统中,人工神经网络(ANN)在解决计算问题方面占据重要地位。除了多重优点外,神经网络也有一些缺点,这些缺点在大多数应用中都没有注意到。主要缺点是,产生高精度的ANN需要较长的收敛时间,而快得多的ANN通常是不准确的。因此,非常需要同时满足高收敛速度和准确性的准则的人工神经网络。在这项工作中,通过提出两个新颖的神经网络,即改进的反向传播神经网络(MCPN)和改进的Kohonen神经网络(MKNN),解决了这一缺陷。通过对常规CPN和Kohonen网络的训练方法进行修改来构架这些网络。这项工作的主要概念是使ANN免迭代,这除了提高结果的准确性外,还最终提高了收敛速度。在异常脑图像分类的背景下分析这些网络的性能。实验结果表明,在性能指标方面,拟议网络具有良好的前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号