首页> 外文期刊>Neurocomputing >Framelet based pan-sharpening via a variational method
【24h】

Framelet based pan-sharpening via a variational method

机译:通过变分方法基于帧的全帧锐化

获取原文
获取原文并翻译 | 示例

摘要

Pan-sharpening is a process of combining a low resolution multi-spectral (MS) image and a high resolution panchromatic (PAN) image to obtain a single high resolution MS image. In this paper, we propose two pan-sharpening methods based on the framelet framework. The first method, as a basic work, is called a framelet-based pan-sharpening (FP) method. In the FP method, we first decompose the MS and PAN images into framelet coefficients, then obtain a new set of coefficients by choosing the approximation coefficients in MS and detail coefficients in PAN, and finally construct the pan-sharpened image from the new set of coefficients. To overcome the inflexibility of FP, in the second method, by combining FP and other three fusion requirements, i.e., geometry keeping, spectral preserving and the sparsity of the image in the framelet domain, four assumptions are established. Based on these assumptions, a framelet based variational energy functional, whose minimizer is related to the final pan-sharpened result, is then formulated. To improve the numerical efficiency, the split Bregman iteration is further introduced, and the result of FP method is set as an initial value. We refer this method as the variational framelet pan-sharpening (VFP) method. To verify the effectiveness of our methods, we present the results of the two methods on the QuickBird and IKONOS images, compare them with five existing methods qualitatively and quantitatively, analyze the influence of parameters of VFP, and extend the VFP to hyperspectral data as well as comparison study. The experimental results demonstrate the superiority of our methods.
机译:泛锐化是将低分辨率多光谱(MS)图像和高分辨率全色(PAN)图像组合在一起以获得单个高分辨率MS图像的过程。在本文中,我们提出了两种基于框架框架的泛锐化方法。作为基本工作,第一种方法称为基于框架的泛锐化(FP)方法。在FP方法中,我们首先将MS和PAN​​图像分解为小帧系数,然后通过选择MS中的近似系数和PAN中的细节系数来获得新的系数集,最后从新的图像集中构建泛锐化图像系数。为了克服FP的不灵活性,在第二种方法中,通过将FP与其他三个融合要求(即几何保持,光谱保持和小帧域中的图像稀疏性)相结合,建立了四个假设。基于这些假设,然后制定了基于框架的变分能量函数,其最小化函数与最终的泛锐化结果有关。为了提高数值效率,进一步引入了分裂的Bregman迭代,并将FP方法的结果设置为初始值。我们将此方法称为可变框架泛锐化(VFP)方法。为了验证我们方法的有效性,我们在QuickBird和IKONOS图像上展示了这两种方法的结果,将它们与五种现有方法进行了定性和定量比较,分析了VFP参数的影响,并将VFP扩展到了高光谱数据作为比较研究。实验结果证明了我们方法的优越性。

著录项

  • 来源
    《Neurocomputing》 |2014年第10期|362-377|共16页
  • 作者单位

    Department of Computer Science, East China Normal University, Shanghai, China;

    Department of Computer Science, East China Normal University, Shanghai, China,Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University;

    Department of Mathematics, East China Normal University, Shanghai, China;

    Department of Computer Science, East China Normal University, Shanghai, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Pan-sharpening; Framelet; Sparsity; Variational method; Split Bregman iteration;

    机译:泛锐化框架;稀疏性变分法;拆分Bregman迭代;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号