首页> 外文期刊>Neurocomputing >Robust visual tracking based on incremental discriminative projective non-negative matrix factorization
【24h】

Robust visual tracking based on incremental discriminative projective non-negative matrix factorization

机译:基于增量判别投影非负矩阵分解的鲁棒视觉跟踪

获取原文
获取原文并翻译 | 示例

摘要

Visual tracking usually requires an object appearance model that is robust to changing illumination, partial occlusion, large pose and other factors encountered in video. Most existed visual tracking algorithms tend to drift away from targets and even fail in tracking them in presence of significant variation of the object appearance model or challenging situations. To address this issue, we propose a robust tracking algorithm based on discriminative projective non-negative matrix factorization and a robust inter-frame matching schema. The models of target and background are presented by the basis matrices of non-negative matrix factorization. In order to adapt the basis matrices to the variation of foreground and background during tracking, an incremental learning method is employed to update the basis matrices. A robust inter-frame matching by bidirectional method and Delaunay triangulation is adopted to improve the proposal distribution of particle filter, thus enhancing the performance of tracking. Template matching is used to correct the drift of the target if the result of discriminative part is unreliable. The proposed method is embedded into a Bayesian inference framework for visual tracking. Experiments on some publicly available benchmarks of video sequences demonstrate the effectiveness and robustness of our approach. (C) 2015 Elsevier B.V. All rights reserved.
机译:视觉跟踪通常需要一个对象外观模型,该模型对于改变照明,部分遮挡,大姿势和视频中遇到的其他因素具有鲁棒性。大多数现有的视觉跟踪算法往往会偏离目标,甚至在对象外观模型发生重大变化或具有挑战性的情况下也无法跟踪目标。为了解决这个问题,我们提出了一种基于判别射影非负矩阵分解和鲁棒帧间匹配方案的鲁棒跟踪算法。目标和背景模型由非负矩阵分解的基本矩阵表示。为了使基本矩阵适应跟踪过程中前景和背景的变化,采用增量学习方法来更新基本矩阵。采用双向鲁棒的帧间匹配和Delaunay三角剖分技术,改善了粒子滤波器的建议分布,提高了跟踪性能。如果区分部分的结果不可靠,则使用模板匹配来校正目标的漂移。所提出的方法被嵌入到用于视觉跟踪的贝叶斯推理框架中。在一些公开的视频序列基准测试中,实验证明了我们方法的有效性和鲁棒性。 (C)2015 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2015年第20期|210-228|共19页
  • 作者单位

    Shanghai Second Polytech Univ, Sch Intelligent Mfg & Control Engn, Dept Automat & Mech & Elect Engn, Shanghai 201209, Peoples R China;

    Shanghai Jiao Tong Univ, Dept Automat, Shanghai 200240, Peoples R China|Minist Educ China, Key Lab Syst Control & Informat Proc, Shanghai 200240, Peoples R China;

    Shanghai Jiao Tong Univ, Dept Automat, Shanghai 200240, Peoples R China|Minist Educ China, Key Lab Syst Control & Informat Proc, Shanghai 200240, Peoples R China;

    Shanghai Jiao Tong Univ, Dept Automat, Shanghai 200240, Peoples R China|Minist Educ China, Key Lab Syst Control & Informat Proc, Shanghai 200240, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Visual tracking; Non-negative matrix factorization; Speeded up robust features; Delaunay triangulation; Template matching;

    机译:视觉跟踪;非负矩阵分解;加速健壮特征;Delaunay三角剖分;模板匹配;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号