首页> 外文期刊>Neurocomputing >Classification of mental tasks from EEG data using backtracking search optimization based neural classifier
【24h】

Classification of mental tasks from EEG data using backtracking search optimization based neural classifier

机译:使用基于神经分类器的回溯搜索优化从脑电数据中对心理任务进行分类

获取原文
获取原文并翻译 | 示例

摘要

Brain Computer Interface (BCI) has been applied to augment impaired human cognitive function by converting mental signals into control signals. This paper presents a neural classifier optimized using Backtracking Search optimization Algorithm (BSANN) to classify three mental tasks consisting of right or left hand movement imagination and generation of word. BSA is an Evolutionary Algorithm (EA) which is suitable for deciphering non-linear and non-differentiable problems. Single control parameter gives BSA an upshot over other EA due to the lower degree of randomness. BSA keeps memory of old population to generate a new candidate set i.e. solution, so it gets the advantage of utilizing the search results of the previous population. The proposed method (BSANN) has been tested on the publicly available datasets of BCI Competition 3-5. Experimental result shows that BSANN exhibits better results than 21 other algorithms for classification of mental tasks in terms of classification accuracy. (C) 2015 Elsevier B.V. All rights reserved.
机译:脑计算机接口(BCI)已通过将心理信号转换为控制信号来增强受损的人类认知功能。本文提出了一种神经分类器,该算法使用回溯搜索优化算法(BSANN)进行了优化,以对由右手或左手运动想象力和单词生成组成的三个心理任务进行分类。 BSA是一种进化算法(EA),适用于解密非线性和不可微问题。由于较低的随机性,单一控制参数使BSA优于其他EA。 BSA保留旧人口的记忆以生成新的候选集(即解决方案),因此具有利用先前人口的搜索结果的优势。建议的方法(BSANN)已在BCI竞赛3-5的公开数据集中进行了测试。实验结果表明,在分类精度方面,BSANN的结果优于其他21种对心理任务进行分类的算法。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号