首页> 外文期刊>Neurocomputing >A coarse-to-fine model for airport detection from remote sensing images using target-oriented visual saliency and CRF
【24h】

A coarse-to-fine model for airport detection from remote sensing images using target-oriented visual saliency and CRF

机译:使用面向目标的视觉显着性和CRF从遥感图像中进行机场检测的粗略模型

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel computational model to detect airports in optical remote sensing images (RSI). It works in a hierarchical architecture with a coarse layer and a fine layer. At the coarse layer, a target-oriented saliency model is built by combing the cues of contrast and line density to rapidly localize the airport candidate areas. Furthermore, at the fine layer, a learned condition random field (CRF) model is applied to each candidate area to perform the fine detection of the airport target. The CRF model is learned based on sparse features of local patches in a multi-scale structure and it also takes the contextual information of target into consideration. Therefore, its detection is more accurate and is robust to target scale variation. Comprehensive evaluations on RSI database from the Google Earth and comparisons with state-of-the-art approaches demonstrate the effectiveness of the proposed model. (C) 2015 Elsevier B.V. All rights reserved.
机译:本文提出了一种新颖的计算模型来检测光学遥感图像(RSI)中的机场。它在具有粗糙层和精细层的分层体系结构中工作。在粗糙层,通过结合对比度和线密度的提示来快速定位机场候选区域,从而建立了面向目标的显着性模型。此外,在精细层,将学习条件随机场(CRF)模型应用于每个候选区域,以执行机场目标的精细检测。基于多尺度结构中局部补丁的稀疏特征来学习CRF模型,并且它还考虑了目标的上下文信息。因此,它的检测更加准确,并且对目标刻度变化具有鲁棒性。 Google Earth对RSI数据库的综合评估以及与最新方法的比较证明了所提出模型的有效性。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号