首页> 外文期刊>Neurocomputing >Addressing imbalance in multilabel classification: Measures and random resampling algorithms
【24h】

Addressing imbalance in multilabel classification: Measures and random resampling algorithms

机译:解决多标签分类中的不平衡:度量和随机重采样算法

获取原文
获取原文并翻译 | 示例

摘要

The purpose of this paper is to analyze the imbalanced learning task in the multilabel scenario, aiming to accomplish two different goals. The first one is to present specialized measures directed to assess the imbalance level in multilabel datasets (MLDs). Using these measures we will be able to conclude which MLDs are imbalanced, and therefore would need an appropriate treatment The second objective is to propose several algorithms designed to reduce the imbalance in MLDs in a classifier-independent way, by means of resampling techniques. Two different approaches to divide the instances in minority and majority groups are studied. One of them considers each label combination as class identifier, whereas the other one performs an individual evaluation of each label imbalance level. A random undersampling and a random oversampling algorithm are proposed for each approach, giving as result four different algorithms. All of them are experimentally tested and their effectiveness is statistically evaluated. From the results obtained, a set of guidelines directed to show when these methods should be applied is also provided. (C) 2015 Elsevier B.V. All rights reserved.
机译:本文的目的是分析多标签情景中的不平衡学习任务,旨在实现两个不同的目标。第一个是提出专门的措施,旨在评估多标签数据集(MLD)中的失衡水平。使用这些措施,我们将能够得出哪些MLD不平衡的结论,因此需要适当的处理。第二个目标是提出几种旨在通过重采样技术以与分类器无关的方式减少MLD不平衡的算法。研究了将实例划分为少数群体和多数群体的两种不同方法。其中一个将每个标签组合视为类别标识符,而另一个则对每个标签不平衡水平进行单独评估。针对每种方法,提出了随机欠采样和随机过采样算法,从而给出了四种不同的算法。所有这些都经过实验测试,并且对其有效性进行了统计评估。根据获得的结果,还提供了一组指导,指示应何时应用这些方法。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号