首页> 外文期刊>Neurocomputing >Modeling permeability and PVT properties of oil and gas reservoir using hybrid model based on type-2 fuzzy logic systems
【24h】

Modeling permeability and PVT properties of oil and gas reservoir using hybrid model based on type-2 fuzzy logic systems

机译:基于2型模糊逻辑混合模型的油气藏渗透率和PVT特性建模。

获取原文
获取原文并翻译 | 示例

摘要

In this work, the power of type-2 fuzzy logic system is demonstrated by using it to improve the prediction of permeability and PVT properties in a hybrid model setup. Hybrid intelligent model through the fusion of type-2 FLS (T2) and sensitivity-based linear learning method (SBLLM) is presented, and is hereby referred to as T2-SBLLM hybrid model. SBLLM, as a learning tool, has gained popularity due to its unique characteristics and performance. However, the generalization capability of SBLLM and other neural network-based solutions often depends on the nature of the dataset, particularly on whether uncertainty is present in the dataset or not This work proposes a hybrid system through a combination of type-2 fuzzy logic systems (type-2 FLS) and SBLLM, and then uses it to model both permeability and PVT properties of oil and gas reservoir; type-2 FLS has been chosen to be a precursor to SBLLM in order to better handle uncertainties existing in the datasets. The type-2 FLS is used to first handle uncertainties in the reservoir data so that the final output is then passed to the SBLLM for training and then final prediction is done using the unseen testing dataset. Comparative studies have been carried out using different industrial reservoir data for both permeability and PVT properties. Empirical results show that the proposed T2-SBLLM hybrid system outperformed each of the type-2 FLS and SBLLM, as the two constituent models, in all cases, with the improvement made to the SBLLM performance being far higher compared to that of type-2 FLS, since type-2 FLS is originally adept at modeling uncertainties.
机译:在这项工作中,通过使用2型模糊逻辑系统改善混合模型设置中渗透率和PVT属性的预测,证明了该系统的功能。提出了通过将2型FLS(T2)与基于灵敏度的线性学习方法(SBLLM)融合而得到的混合智能模型,在此称为T2-SBLLM混合模型。 SBLLM作为一种学习工具,由于其独特的特性和性能而受到欢迎。但是,SBLLM和其他基于神经网络的解决方案的泛化能力通常取决于数据集的性质,尤其取决于数据集中是否存在不确定性。这项工作通过结合2型模糊逻辑系统提出了一种混合系统。 (2型FLS)和SBLLM,然后将其用于模拟油气藏的渗透率和PVT特性;为了更好地处理数据集中存在的不确定性,已选择2型FLS作为SBLLM的先驱。 2型FLS用于首先处理储层数据中的不确定性,因此最终输出将传递到SBLLM进行训练,然后使用看不见的测试数据集进行最终预测。使用不同的工业储层数据对渗透率和PVT特性进行了比较研究。实证结果表明,在所有情况下,所提出的T2-SBLLM混合动力系统均优于2型FLS和SBLLM,这是两个组成模型,与2型相比,SBLLM性能的改进要高得多FLS,因为2型FLS最初擅长建模不确定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号