首页> 外文期刊>Neurocomputing >A sparse-representation-based robust inspection system for hidden defects classification in casting components
【24h】

A sparse-representation-based robust inspection system for hidden defects classification in casting components

机译:一种基于稀疏表示的鲁棒检测系统,用于铸造零件中的隐藏缺陷分类

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a robust sparse-representation-based inspection system for the detection and classification of casting hidden defects in radiographs is presented. Four common types of casting defects including cracks, blow holes, shrinkage porosities and shrinkage cavities are considered in our system. In the framework, a Gray Arranging Pairs (GAP) based segmentation method is implemented firstly. This method can deal with the case of casting that has complex structure well and is robust against non-uniform illumination variations and noise. Second, a Randomly Distributed Triangle (RDT) feature is extracted to represent the geometric characteristic of each defect. This feature uses random triangle samplings which are formed from the defect shape to produce a continuous probability distribution. It is simple and can discriminate defects correctly despite of rotation, scale and noise. Third, a Sparse Representation-based Classification (SRC) is trained to classify each of the input defect into one of the classes. The performance of the proposed method is shown in the experiment by comparing with the SVM classifier.
机译:本文提出了一种基于健壮的基于稀疏表示的检测系统,用于对射线照相中的铸件隐藏缺陷进行检测和分类。在我们的系统中,考虑了四种常见的铸造缺陷类型,包括裂纹,气孔,缩孔和缩孔。在该框架中,首先实现了基于灰度排列对(GAP)的分割方法。该方法可以很好地处理结构复杂且对不均匀照明变化和噪声具有鲁棒性的铸件。其次,提取随机分布的三角形(RDT)特征以表示每个缺陷的几何特征。此功能使用由缺陷形状形成的随机三角形采样以产生连续的概率分布。它很简单,尽管有旋转,水垢和噪音,也可以正确地识别缺陷。第三,训练基于稀疏表示的分类(SRC)将每个输入缺陷分类为一个类。通过与支持向量机分类器进行比较,实验结果表明了该方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号