首页> 外文期刊>Neurocomputing >Simple yet effective color principal and discriminant feature extraction for representing and recognizing color images
【24h】

Simple yet effective color principal and discriminant feature extraction for representing and recognizing color images

机译:简单而有效的色彩原理和判别特征提取,用于表示和识别彩色图像

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we investigate the problem of extracting two-dimensional color principal and discriminant features for understanding color images. Specifically, two simple yet effective color image feature extraction criteria, called Color Principal Component Analysis (ColorPCA) and Color Linear Discriminant Analysis (ColorLDA), are proposed for color image analysis. The presented criteria can preserve color and topology information of pixels in images, and extract features directly from color images in an efficient manner by eigen-decomposing a single eigen-problem. In modeling the criteria, color image scatter matrices are defined. Like PCA, LDA and their two-dimensional (2D) extensions, our methods only need to choose the number of projection vectors. More importantly, the matrices to be eigen-decomposed in our criteria have the same size as 2DPCA and 2DLDA that are very efficient. To achieve an orthogonal projection matrix, trace ratio ColorLDA is also presented. We also present the alternative versions of our approaches for feature learning through mining row or column information of the images. Extensive simulations on benchmark datasets are conducted to evaluate our algorithms. The investigated cases demonstrate the effectiveness and efficiency of our techniques, compared with other most related state-of-the-art 1D and 2D criteria.
机译:在本文中,我们研究了提取二维色彩本原和判别特征以理解彩色图像的问题。具体来说,提出了两个简单而有效的彩色图像特征提取标准,称为彩色主成分分析(ColorPCA)和彩色线性判别分析(ColorLDA),用于彩色图像分析。提出的标准可以保留图像中像素的颜色和拓扑信息,并通过特征分解单个特征问题以有效的方式直接从彩色图像中提取特征。在对标准进行建模时,将定义彩色图像散射矩阵。像PCA,LDA及其二维(2D)扩展一样,我们的方法只需要选择投影矢量的数量即可。更重要的是,在我们的标准中要特征分解的矩阵具有与2DPCA和2DLDA相同的大小,它们的效率很高。为了实现正交投影矩阵,还提出了跟踪比ColorLDA。我们还将介绍通过挖掘图像的行或列信息进行特征学习的方法的替代版本。对基准数据集进行了广泛的仿真,以评估我们的算法。与其他最相关的最新一维和二维标准相比,所研究的案例证明了我们技术的有效性和效率。

著录项

  • 来源
    《Neurocomputing》 |2015年第ptab期|1058-1073|共16页
  • 作者单位

    School of Computer Science and Technology, Soochow University, Suzhou 215006, PR China,Provincial Key Laboratory for Computer Information Processing Technology, Soochow University, PR China;

    Department of Electronic Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong;

    Department of Electronic Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong;

    Department of Electronic Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong;

    School of Computer Science and Technology, Soochow University, Suzhou 215006, PR China,Provincial Key Laboratory for Computer Information Processing Technology, Soochow University, PR China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Color image analysis; Dimensionality reduction; Color image feature extraction; Eigen-decomposition; Principal component analysis; Discriminant analysis;

    机译:彩色图像分析;降维;彩色图像特征提取;本征分解主成分分析;判别分析;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号