首页> 外文期刊>Neurocomputing >Application of a staged learning-based resource allocation network to automatic text categorization
【24h】

Application of a staged learning-based resource allocation network to automatic text categorization

机译:分阶段的基于学习的资源分配网络在文本自动分类中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a novel learning classifier which utilizes a staged learning-based resource allocation network (SLRAN) for text categorization. In the light of its learning progress, SLRAN is divided into a preliminary learning phase and a refined learning phase. In the former phase, to reduce the sensitivity corresponding to input data an agglomerate hierarchical k-means method is utilized to create the initial structure of hidden layer. Subsequently, a novelty criterion is put forward to dynamically regulate the hidden layer centers. In the latter phase a least square method is used to enhance the convergence rate of network and further improve its ability for classification. Such staged learning-based approach builds a compact structure which decreases the computational complexity of network and boosts its learning capability. In order to implement SLRAN to text categorization, we utilize a semantic similarity approach which reduces the input scales of neural network and reveals the latent semantics between text features. The benchmark Reuter and 20-newsgroup datasets are tested in our experiments and the extensive experimental results reveal that the dynamic learning process of SLRAN improves its classifying performance in comparison with conventional classifiers, e.g. RAN, BP, RBF neural networks and SVM.
机译:在本文中,我们提出了一种新颖的学习分类器,该分类器利用了基于阶段学习的资源分配网络(SLRAN)进行文本分类。根据其学习进度,SLRAN分为初步学习阶段和精细学习阶段。在前一个阶段,为了降低与输入数据相对应的敏感度,使用了聚集的分层k均值方法来创建隐藏层的初始结构。随后,提出了一种新颖的准则来动态调节隐藏层中心。在后一阶段,使用最小二乘法来提高网络的收敛速度,并进一步提高其分类能力。这种分阶段的基于学习的方法构建了紧凑的结构,该结构降低了网络的计算复杂性并提高了其学习能力。为了将SLRAN进行文本分类,我们采用了一种语义相似性方法,该方法减少了神经网络的输入规模,并揭示了文本特征之间的潜在语义。在我们的实验中测试了基准Reuter和20个新闻组数据集,广泛的实验结果表明,SLRAN的动态学习过程与常规分类器(例如, RAN,BP,RBF神经网络和SVM。

著录项

  • 来源
    《Neurocomputing》 |2015年第ptab期|1125-1134|共10页
  • 作者单位

    School of IOT Engineering, Jiangnan University, Lihu Avenue, Wuxi, Jiangsu Province 214122, China,Engineering Research Center of Internet of Things Applied Technology, Ministry of Education, China;

    School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China,Engineering Research Center of Internet of Things Applied Technology, Ministry of Education, China;

    Department of Electronics and Information Engineering, Chonbuk National University, Jeonju, Jeonbuk 561756, Republic of Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Resource allocation network; Neural network; Staged learning algorithm; Text categorization; Novelty criteria;

    机译:资源分配网络;神经网络;分阶段学习算法;文字分类;新颖性标准;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号