首页> 外文期刊>Neurocomputing >Elastic extreme learning machine for big data classification
【24h】

Elastic extreme learning machine for big data classification

机译:弹性极限学习机用于大数据分类

获取原文
获取原文并翻译 | 示例

摘要

Extreme Learning Machine (ELM) and its variants have been widely used for many applications due to its fast convergence and good generalization performance. Though the distributed ELM~* based on MapReduce framework can handle very large scale training dataset in big data applications, how to cope with its rapidly updating is still a challenging task. Therefore, in this paper, a novel Elastic Extreme Learning Machine based on MapReduce framework, named Elastic ELM (E~2LM), is proposed to cover the shortage of ELM~* whose learning ability is weak to the updated large-scale training dataset. Firstly, after analyzing the property of ELM~* adequately, it can be found out that its most computation-expensive part, matrix multiplication, can be incrementally, decrementally and correctionally calculated. Next, the Elastic ELM based on MapReduce framework is developed, which first calculates the intermediate matrix multiplications of the updated training data subset, and then update the matrix multiplications by modifying the old matrix multiplications with the intermediate ones. Then, the corresponding new output weight vector can be obtained with centralized computing using the update the matrix multiplications. Therefore, the efficient learning of rapidly updated massive training dataset can be realized effectively. Finally, we conduct extensive experiments on synthetic data to verify the effectiveness and efficiency of our proposed E~2LM in learning massive rapidly updated training dataset with various experimental settings.
机译:极限学习机(ELM)及其变体由于其快速收敛和良好的泛化性能而已广泛用于许多应用程序。尽管基于MapReduce框架的分布式ELM〜*可以处理大数据应用中的超大规模训练数据集,但是如何应对其快速更新仍然是一项艰巨的任务。因此,本文提出了一种新的基于MapReduce框架的Elastic Extreme学习机,名为Elastic ELM(E〜2LM),以解决学习能力弱于更新的大规模训练数据集的ELM〜*的不足。首先,在充分分析了ELM〜*的性质之后,可以发现其最耗费计算量的部分,即矩阵乘法,可以递增,递减和校正地进行计算。接下来,开发基于MapReduce框架的Elastic ELM,该算法首先计算更新后的训练数据子集的中间矩阵乘法,然后通过用中间的矩阵乘法修改旧的矩阵乘法来更新矩阵乘法。然后,可以使用更新的矩阵乘法通过集中计算获得相应的新输出权重向量。因此,可以有效地实现快速更新的大规模训练数据集的高效学习。最后,我们对合成数据进行了广泛的实验,以验证我们提出的E〜2LM在学习具有各种实验设置的大量快速更新的训练数据集方面的有效性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号