首页> 外文期刊>Neurocomputing >Compass local binary patterns for gender recognition of facial photographs and sketches
【24h】

Compass local binary patterns for gender recognition of facial photographs and sketches

机译:罗盘局部二进制模式,用于面部照片和素描的性别识别

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new feature extraction method, compass local binary pattern (CoLBP) for facial gender recognition. To achieve robustness, the proposed method first computes directional edge responses using eight Kirsch compass masks. Then, the spatial relationships among the neighboring pixels in each edge response are exploited independently with the help of local binary pattern (LBP) to enhance the discrimination capability. Finally, spatial histograms computed from these LBP images are concatenated to build a face descriptor. Our proposed descriptor efficiently extracts discriminating information from four different levels, including gradient, regional, global and directional level. The proposed method was evaluated on three datasets (color FERET, LFW, and Adience) containing facial photographs. In spite of a wide range of challenges (low resolution, variations in pose, expression, and illumination) present in the datasets, the proposed method provided promising classification performance in comparison with several existing benchmark methods, thereby validating its robustness. Moreover, this paper also investigates the gender recognition of facial sketches. The experiments carried out on two facial sketch datasets including CUFS and CUFSF also demonstrated better classification performance of the proposed method. (C) 2016 Elsevier B.V. All rights reserved.
机译:本文提出了一种新的特征提取方法,罗盘局部二进制模式(CoLBP)用于面部性别识别。为了实现鲁棒性,所提出的方法首先使用八个Kirsch指南针掩模计算方向边缘响应。然后,借助局部二进制模式(LBP)独立地利用每个边缘响应中的相邻像素之间的空间关系,以增强判别能力。最后,将从这些LBP图像计算出的空间直方图连接起来以构建人脸描述符。我们提出的描述符可有效地从四个不同级别(包括梯度,区域,全局和方向级别)中提取区分信息。该方法在包含面部照片的三个数据集(彩色FERET,LFW和Adience)上进行了评估。尽管数据集中存在各种挑战(低分辨率,姿势,表情和照明的变化),但与几种现有基准方法相比,该方法仍提供了有希望的分类性能,从而验证了其鲁棒性。此外,本文还研究了面部素描的性别识别。在包括CUFS和CUFSF的两个面部素描数据集上进行的实验也证明了该方法的更好分类性能。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号