首页> 外文期刊>Neurocomputing >Kernel latent features adaptive extraction and selection method for multi-component non-stationary signal of industrial mechanical device
【24h】

Kernel latent features adaptive extraction and selection method for multi-component non-stationary signal of industrial mechanical device

机译:工业机械设备多分量非平稳信号的核潜特征自适应提取与选择方法

获取原文
获取原文并翻译 | 示例

摘要

Heavy key mechanical devices relate to production quality and quantity of complex industrial process directly. It is necessary to estimate some difficulty-to-measure process parameters inside these devices. Multi-component and non-stationary mechanical signals, such as vibration and acoustic ones, are always employed to model these process parameters indirectly. How to effective extract and select interesting information from these signals is the key step to build effective soft sensor model. In this paper, a new kernel latent features adaptive extraction and selection method is proposed. Ensemble empirical mode decomposition (EEMD) is used to decompose these mechanical signals into multiple time scales sub signals with different physical interpretations. These sub-signals are transformed to frequency spectra, and then kernel partial least squares (KPLS) algorithm is used to extract their kernel features. Integrated with mutual information (MI)-based feature selection method, a new define index is exploited to select the important sub-signals and their latent features adaptively. The shell vibration and acoustic signals of an experimental laboratory-scale ball mill in the mineral grinding process are used to validate the proposed approach. (C) 2016 Elsevier B.V. All rights reserved.
机译:重型机械设备直接关系到复杂工业过程的生产质量和数量。有必要估计这些设备内部的一些难以测量的过程参数。多分量和非平稳的机械信号(例如振动和声学信号)始终被用来间接地对这些过程参数进行建模。如何有效地从这些信号中提取和选择有趣的信息是建立有效的软传感器模型的关键步骤。提出了一种新的内核潜在特征自适应提取与选择方法。集合经验模式分解(EEMD)用于将这些机械信号分解为具有不同物理解释的多个时标子信号。将这些子信号转换为频谱,然后使用内核偏最小二乘(KPLS)算法提取其内核特征。结合基于互信息(MI)的特征选择方法,利用新的定义索引来自适应地选择重要的子信号及其潜在特征。实验性实验室规模的球磨机在矿物研磨过程中的壳体振动和声信号被用来验证所提出的方法。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号