首页> 外文期刊>Neurocomputing >A novel feature extraction method for scene recognition based on Centered Convolutional Restricted Boltzmann Machines
【24h】

A novel feature extraction method for scene recognition based on Centered Convolutional Restricted Boltzmann Machines

机译:基于中心卷积受限玻尔兹曼机的场景识别新特征提取方法

获取原文
获取原文并翻译 | 示例

摘要

Scene recognition is an important research topic in computer vision, while feature extraction is a key step of scene recognition. Although classical Restricted Boltzmann Machines (RBM) can efficiently represent complicated data, it is hard to handle large images due to its complexity in computation. In this paper, a novel feature extraction method, named Centered Convolutional Restricted Boltzmann Machines (CCRBM), is proposed for scene recognition. The proposed model improves the Convolutional Restricted Boltzmann Machines (CRBM) by introducing centered factors in its learning strategy to reduce the source of instabilities. First, the visible units of the network are redefined using centered factors. Then, the hidden units are learned with a modified energy function by utilizing a distribution function, and the visible units are reconstructed using the learned hidden units. In order to achieve better generative ability, the Centered Convolutional Deep Belief Networks (CCDBN) is trained in a greedy layer-wise way. Finally, a softmax regression is incorporated for scene recognition. Extensive experimental evaluations on the datasets of natural scenes, MIT-indoor scenes, MIT-Places 205, SUN 397, Caltech 101, CIFAR-10, and NORB show that the proposed approach performs better than its counterparts in terms of stability, generalization, and discrimination. The CCDBN model is more suitable for natural scene image recognition by virtue of convolutional property. (C) 2016 Elsevier B.V. All rights reserved.
机译:场景识别是计算机视觉中的重要研究课题,而特征提取是场景识别的关键步骤。尽管经典的受限玻尔兹曼机(RBM)可以有效地表示复杂的数据,但由于其计算复杂性,因此难以处理大图像。本文提出了一种新的特征提取方法,称为中心卷积受限玻尔兹曼机(CCRBM),用于场景识别。所提出的模型通过在其学习策略中引入中心因素来减少不稳定性的来源,从而改进了卷积受限玻尔兹曼机(CRBM)。首先,使用中心因子重新定义网络的可见单位。然后,利用分布函数利用修正的能量函数来学习隐藏单元,并使用学习到的隐藏单元来重构可见单元。为了获得更好的生成能力,对中心卷积深信度网络(CCDBN)进行了贪婪分层训练。最后,结合了softmax回归用于场景识别。对自然场景,室内MIT场景,MIT-Places 205,SUN 397,Caltech 101,CIFAR-10和NORB的数据集进行的广泛实验评估表明,在稳定性,泛化性和稳定性方面,所提方法的性能均优于同类方法。歧视。 CCDBN模型具有卷积特性,因此更适合于自然场景图像识别。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号