首页> 外文期刊>Neurocomputing >Efficient auto-scaling scheme for rapid storage service using many-core of desktop storage virtualization based on IoT
【24h】

Efficient auto-scaling scheme for rapid storage service using many-core of desktop storage virtualization based on IoT

机译:使用基于IoT的多核桌面存储虚拟化技术的高效自动扩展方案,用于快速存储服务

获取原文
获取原文并翻译 | 示例

摘要

Following the progressive development of IT technology, on-premise IT resources have been shifted to cloud computing environments. The principle reason for this change in IT resource-composing environments is that cloud computing services allow IT resources to be used as and when necessary, which means without buying hardware equipment. For this reason, studies on diverse aspects are being conducted for better security, rapidity, availability, reliability, and elasticity of cloud computing. Among the virtualization technologies that are basic for cloud computing, desktop storage virtualization (DSV) is composed of distributed legacy desktop personal computers. In DSV environments, clustering by unavailable state time and auto-scaling for storage provision as requested by users are considered very important. In addition, deferred processing for analysis of desktop PC performance states in DSV environments to select an appropriate desktop PC is directly connected to the quality of service (QoS). Although diverse algorithms and schemes for clustering and auto-scaling have been developed to this end, they have limited performance or have been made without considering DSV environments. Consequently, large amounts of deferred processing time are required. In the present paper, an efficient auto-scaling scheme (EAS) is proposed that minimizes deferred processing time in Internet of Things (IoT) environments by using many-cores of the GPU for clustering and auto-scaling in DSV environments. The EAS provides higher QoS to storage users compared to the CPU by mapping the information of numerous distributed desktop PCs on individual threads of the GPU and processing the information in parallel. (C) 2016 Elsevier B.V. All rights reserved.
机译:随着IT技术的不断发展,本地IT资源已转移到云计算环境。在IT资源构成环境中进行此更改的主要原因是,云计算服务允许在必要时使用IT资源,这意味着无需购买硬件设备。因此,为了提高云计算的安全性,快速性,可用性,可靠性和弹性,正在对各个方面进行研究。在云计算的基本虚拟化技术中,桌面存储虚拟化(DSV)由分布式旧式台式个人计算机组成。在DSV环境中,按不可用的状态时间进行群集以及按照用户的要求自动缩放存储设置被认为非常重要。此外,用于分析DSV环境中的台式PC性能状态以选择合适的台式PC的延迟处理直接与服务质量(QoS)连接。尽管为此目的已经开发了用于聚类和自动缩放的各种算法和方案,但是它们的性能有限,或者在不考虑DSV环境的情况下进行了开发。因此,需要大量的延迟处理时间。在本文中,提出了一种有效的自动缩放方案(EAS),该方案通过使用GPU的多核在DSV环境中进行聚类和自动缩放来最大程度地减少物联网(IoT)环境中的延迟处理时间。与CPU相比,EAS通过将大量分布式台式机的信息映射到GPU的各个线程上并进行并行处理,从而为存储用户提供了更高的QoS。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号