首页> 外文期刊>Neurocomputing >Transfer subspace learning for cross-dataset facial expression recognition
【24h】

Transfer subspace learning for cross-dataset facial expression recognition

机译:转移子空间学习用于跨数据集面部表情识别

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a transfer subspace learning approach cross-dataset facial expression recognition. To our best knowledge, this problem has been seldom addressed in the literature. While many facial expression recognition methods have been proposed in recent years, most of them assume that face images in the training and testing sets are collected under the same conditions so that they are independently and identically distributed. In many real applications, this assumption does not hold as the testing data are usually collected online and are generally more uncontrollable than the training data. Hence, the testing samples are likely different from the training samples. In this paper, we define this problem as cross-dataset facial expression recognition as the training and testing. data are considered to be collected from different datasets due to different acquisition conditions. To address this, we propose a transfer subspace learning approach to learn a feature subspace which transfers the knowledge gained from the source domain (training samples) to the target domain (testing samples) to improve the recognition performance. To better exploit more complementary information for multiple feature representations of face images, we develop a multi-view transfer subspace learning approach where multiple different yet related subspaces are learned to transfer information from the source domain to the target domain. Experimental results are presented to demonstrate the efficacy of these proposed methods for the cross-dataset facial expression recognition task. (C) 2016 Elsevier B.V. All rights reserved.
机译:在本文中,我们提出了一种转移子空间学习方法跨数据集的面部表情识别方法。据我们所知,文献中很少解决这个问题。尽管近年来已经提出了许多面部表情识别方法,但是它们大多数都假设训练和测试集中的面部图像是在相同条件下收集的,因此它们是独立且均匀分布的。在许多实际应用中,此假设不成立,因为测试数据通常是在线收集的,并且通常比培训数据更不可控制。因此,测试样本可能与训练样本不同。在本文中,我们将此问题定义为跨数据集的面部表情识别作为训练和测试。由于不同的采集条件,因此认为数据是从不同的数据集中收集的。为了解决这个问题,我们提出了一种转移子空间学习方法来学习特征子空间,该特征子空间将从源域(训练样本)获得的知识转移到目标域(测试样本),以提高识别性能。为了更好地利用人脸图像的多个特征表示的更多补充信息,我们开发了一种多视图传输子空间学习方法,其中学习了多个不同但相关的子空间,以将信息从源域传输到目标域。提出实验结果以证明这些提出的方法对于跨数据集面部表情识别任务的功效。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号