首页> 外文期刊>Neurocomputing >Multi-source alert data understanding for security semantic discovery based on rough set theory
【24h】

Multi-source alert data understanding for security semantic discovery based on rough set theory

机译:基于粗糙集理论的多源警报数据对安全语义发现的理解

获取原文
获取原文并翻译 | 示例

摘要

To secure the network system, a large number of different information security devices, e.g., intrusion detection system, firewall, etc., have been deployed in the network. These devices can protect the network system from all aspects, but also bring new problems for information security administration. Massive alert data from different devices are increasingly generated and some real alerts are buried with the overwhelming alerts, which are mixed with a large amount of repetitive and false alerts. In this paper, we propose a multi-source alert data understanding scheme based on rough set theory for security semantic discovery. Firstly, we classify the alert data according to the data features to merge the multi-source alerts. Then, we calculate the weight for each classification of alerts by applying the rough set theory to historical data. Then we perform data aggregation by alert similarity computation to reduce repetitive alerts from different sources. Also, we introduce reliability metrics to measure the credibility of different alerts for further correlation and semantic analysis according to the network background information. We perform experiments on the collected data set in the real network system and DARPR 2000 data set. Experimental results show that our proposed method could reduce more than 80% repetitive alerts in the data sets. (C) 2016 Elsevier B.V. All rights reserved.
机译:为了保护网络系统,已经在网络中部署了大量不同的信息安全设备,例如入侵检测系统,防火墙等。这些设备可以从各个方面保护网络系统,但也给信息安全管理带来新的问题。来自不同设备的海量警报数据越来越多地生成,并且一些真实警报被压倒性的警报所掩盖,这些警报与大量的重复警报和虚假警报混合在一起。在本文中,我们提出了一种基于粗糙集理论的多源警报数据理解方案,用于安全语义发现。首先,我们根据数据特征对警报数据进行分类,以合并多源警报。然后,我们通过将粗糙集理论应用于历史数据来计算每种警报类别的权重。然后,我们通过警报相似度计算执行数据聚合,以减少来自不同来源的重复警报。此外,我们根据网络背景信息引入了可靠性指标来衡量不同警报的可信度,以进行进一步的关联和语义分析。我们对真实网络系统中的收集数据集和DARPR 2000数据集进行实验。实验结果表明,我们提出的方法可以减少数据集中80%以上的重复警报。 (C)2016 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2016年第5期|39-45|共7页
  • 作者单位

    State Grid Zhejiang Elect Power Co, Informat & Telecommun Branch, Hangzhou, Zhejiang, Peoples R China;

    State Grid Zhejiang Elect Power Co, Informat & Telecommun Branch, Hangzhou, Zhejiang, Peoples R China;

    State Grid Zhoushan Power Supply Co, Zhoushan, Peoples R China;

    Hangzhou Normal Univ, Inst Serv Engn, Hangzhou, Zhejiang, Peoples R China;

    Hangzhou Normal Univ, Inst Serv Engn, Hangzhou, Zhejiang, Peoples R China;

    Zhejiang Univ, Coll Comp Sci & Technol, Hangzhou, Zhejiang, Peoples R China;

    Zhejiang Univ, Coll Comp Sci & Technol, Hangzhou, Zhejiang, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Multi-source; Understanding; Security semantic; Rough set theory; Feature weight;

    机译:多源;理解;安全语义;粗糙集理论;特征权重;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号