首页> 外文期刊>Neurocomputing >Effect of variation in gesticulation pattern in dynamic hand gesture recognition system
【24h】

Effect of variation in gesticulation pattern in dynamic hand gesture recognition system

机译:动态手势识别系统中手势模式变化的影响

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a hand gesture recognition system which addresses the effect of variations in gesture pattern during gesticulation. Different gestures can be gesticulated in various patterns which increase the difficulties in recognizing the gestures. We have proposed two new features such as left sector trajectory features and right sector trajectory features which are able to recognize gestures even with the presence of variations in the gesticulation pattern. The effectiveness of the proposed system is illustrated by different experiments with our own gesture database. A comparative study has been made with the proposed features and three state-of-art features such as orientation; combination of location, orientation, velocity; and combination of ellipse and position features. The performance of the system was evaluated using this proposed set of features for different individual classifiers such as ANN, SVM, k-NN, Naive Bayes and ELM. Finally, the decisions of the individual classifiers were combined using major voting rule to result in classifier fusion model. Based on the experimental results it may be concluded that classifier fusion provides satisfactory results compared to other individual classifiers. An accuracy of 91.07% was achieved using the classifier fusion technique as compared to baseline CRF (79.45%) and HCRF (83.07%) models. (C) 2016 Elsevier B.V. All rights reserved.
机译:本文提出了一种手势识别系统,该系统解决了手势过程中手势模式变化的影响。可以以各种模式示意不同的手势,这增加了识别手势的难度。我们提出了两个新特征,例如左扇形轨迹特征和右扇形轨迹特征,即使在手势模式存在变化的情况下也能够识别手势。通过我们自己的手势数据库进行的不同实验说明了所提出系统的有效性。对建议的功能和三个最新功能(例如方向)进行了比较研究。位置,方向,速度的组合;以及椭圆和位置特征的组合。使用此提议的功能集针对不同的单个分类器(如ANN,SVM,k-NN,朴素贝叶斯和ELM)评估了系统的性能。最后,使用主要投票规则将各个分类器的决策进行组合,从而得出分类器融合模型。根据实验结果,可以得出结论,与其他单个分类器相比,分类器融合可提供令人满意的结果。与基线CRF(79.45%)和HCRF(83.07%)模型相比,使用分类器融合技术可达到91.07%的准确性。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号