首页> 外文期刊>Neurocomputing >Bio-inspired unsupervised learning of visual features leads to robust invariant object recognition
【24h】

Bio-inspired unsupervised learning of visual features leads to robust invariant object recognition

机译:受生物启发的视觉特征无监督学习导致强大的不变对象识别

获取原文
获取原文并翻译 | 示例

摘要

Retinal image of surrounding objects varies tremendously due to the changes in position, size, pose, illumination condition, background context, occlusion, noise, and non-rigid deformations. But despite these huge variations, our visual system is able to invariantly recognize any object in just a fraction of a second. To date, various computational models have been proposed to mimic the hierarchical processing of the ventral visual pathway, with limited success. Here, we show that the association of both biologically inspired network architecture and learning rule significantly improves the models' performance when facing challenging invariant object recognition problems. Our model is an asynchronous feed-forward spiking neural network. When the network is presented with natural images, the neurons in the entry layers detect edges, and the most activated ones fire first, while neurons in higher layers are equipped with spike timing-dependent plasticity. These neurons progressively become selective to intermediate complexity visual features appropriate for object categorization. The model is evaluated on 3D-Object and ETH-80 datasets which are two benchmarks for invariant object recognition, and is shown to outperform state-of-the-art models, including DeepConvNet and HMAX. This demonstrates its ability to accurately recognize different instances of multiple object classes even under various appearance conditions (different views, scales, tilts, and backgrounds). Several statistical analysis techniques are used to show that our model extracts class specific and highly informative features. (C) 2016 Elsevier B.V. All rights reserved.
机译:由于位置,大小,姿势,照明条件,背景环境,遮挡,噪声和非刚性变形的变化,周围物体的视网膜图像变化很大。尽管存在这些巨大的变化,但我们的视觉系统仍能够在不到一秒钟的时间内不变地识别出任何物体。迄今为止,已经提出了各种计算模型来模拟腹侧视觉通路的分层处理,但效果有限。在这里,我们表明,当面临具有挑战性的不变对象识别问题时,将受生物学启发的网络体系结构和学习规则两者的关联可以显着提高模型的性能。我们的模型是异步前馈尖峰神经网络。当网络呈现自然图像时,进入层中的神经元会检测到边缘,最活跃的神经元首先触发,而高层中的神经元则具有与峰值时间相关的可塑性。这些神经元逐渐变得适合于适合对象分类的中等复杂性视觉特征。该模型在3D-Object和ETH-80数据集上进行了评估,这两个数据集是不变对象识别的两个基准,并且显示出优于包括DeepConvNet和HMAX在内的最新模型。这证明了其即使在各种外观条件(不同的视图,比例,倾斜和背景)下也能够准确识别多个对象类的不同实例的能力。几种统计分析技术用于表明我们的模型提取了类的特定信息和高度信息化的特征。 (C)2016 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2016年第12期|382-392|共11页
  • 作者单位

    Univ Tehran, Sch Math Stat & Comp Sci, Dept Comp Sci, Tehran, Iran|Univ Toulouse, CERCO, CNRS, UMR 5549, F-31300 Toulouse, France;

    Univ Tehran, Sch Math Stat & Comp Sci, Dept Comp Sci, Tehran, Iran;

    INSERM, U968, F-75012 Paris, France|Univ Paris 06, Univ Sorbonne, Inst Vis, UMR S 968, F-75012 Paris, France|CNRS, UMR 7210, F-75012 Paris, France|Univ Toulouse, CERCO, CNRS, UMR 5549, F-31300 Toulouse, France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    View-Invariant object recognition; Visual cortex; STDP; Spiking neurons; Temporal coding;

    机译:视图不变对象识别;视觉皮层;STDP;尖峰神经元;时域编码;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号