首页> 外文期刊>Neurocomputing >Principal curvatures based rotation invariant algorithms for efficient texture classification
【24h】

Principal curvatures based rotation invariant algorithms for efficient texture classification

机译:基于主曲率的旋转不变算法,用于有效的纹理分类

获取原文
获取原文并翻译 | 示例

摘要

The histograms of oriented gradients (HOG) and co-occurrence HOG (CoHOG) algorithms are simple and intuitive descriptors. However, the HOG and CoHOG algorithms based on gradient computation still have some shortcomings: they ignore meaningful textural properties and are unstable to noise. In this paper, two new efficient HOG and CoHOG methods are proposed. The proposed algorithms are based on the Gaussian derivative filters, and the feature vectors are obtained by means of principal curvatures. The feature vectors are rotation invariant by means of the rotation invariance characteristic of principal curvatures (i.e. eigenvalues). The experimental results on the CUReT, ICTH-TIPS, KTH-11PS2-a, UIUC, Brodatz album, Kylberg and Xu datasets confirm that the developed algorithms have higher classification rates than state-of-the-art texture classification methods. The classification results also demonstrate that the developed algorithms are more stable to noise and rotation than the original HOG and CoHOG algorithms. (C) 2016 Elsevier B.V. All rights reserved.
机译:定向梯度(HOG)和共现HOG(CoHOG)算法的直方图是简单直观的描述符。但是,基于梯度计算的HOG和CoHOG算法仍然存在一些缺点:它们忽略了有意义的纹理特性,并且对噪声不稳定。本文提出了两种新的有效HOG和CoHOG方法。所提出的算法是基于高斯导数滤波器的,特征向量是通过主曲率获得的。借助于主曲率(即特征值)的旋转不变性特征,特征向量是旋转不变的。在CUReT,ICTH-TIPS,KTH-11PS2-a,UIUC,Brodatz专辑,Kylberg和Xu数据集上的实验结果证实,所开发的算法比最新的纹理分类方法具有更高的分类率。分类结果还表明,与原始的HOG和CoHOG算法相比,该算法对噪声和旋转的稳定性更高。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号