首页> 外文期刊>Neurocomputing >An effective intrusion detection framework based on MCLP/SVM optimized by time-varying chaos particle swarm optimization
【24h】

An effective intrusion detection framework based on MCLP/SVM optimized by time-varying chaos particle swarm optimization

机译:时变混沌粒子群算法优化的基于MCLP / SVM的有效入侵检测框架

获取原文
获取原文并翻译 | 示例

摘要

Many organizations recognize the necessities of utilizing sophisticated tools and systems to protect their computer networks and reduce the risk of compromising their information. Although many machine learning-based data classification algorithm has been proposed in network intrusion detection problem, each of them has its own strengths and weaknesses. In this paper, we propose an effective intrusion detection framework by using a new adaptive, robust, precise optimization method, namely, time varying chaos particle swarm optimization (TVCPSO) to simultaneously do parameter setting and feature selection for multiple criteria linear programming (MCLP) and support vector machine (SVM). In the proposed methods, a weighted objective function is provided, which takes into account trade-off between the maximizing the detection rate and minimizing the false alarm rate, along with considering the number of features. Furthermore, to make the particle swarm optimization algorithm faster in searching the optimum and avoid the search being trapped in local optimum, chaotic concept is adopted in PSO and time varying inertia weight and time varying acceleration coefficient is introduced. The performance of proposed methods has been evaluated by conducting experiments with the NSL-KDD dataset, which is derived and modified from well-known KDD cup 99 data sets. The empirical results show that the proposed method performs better in terms of having a high detection rate and a low false alarm rate when compared with the obtained results using all features. (C) 2016 Elsevier B.V. All rights reserved.
机译:许多组织认识到必须使用复杂的工具和系统来保护其计算机网络并降低破坏其信息的风险。尽管在网络入侵检测问题中已经提出了许多基于机器学习的数据分类算法,但它们各有千秋。在本文中,我们提出了一种有效的入侵检测框架,它使用一种新的自适应,鲁棒,精确的优化方法,即时变混沌粒子群优化(TVCPSO)来同时进行多准则线性规划(MCLP)的参数设置和特征选择。和支持向量机(SVM)。在所提出的方法中,提供了加权目标函数,该函数考虑了在最大化检测率和最小化虚警率之间的权衡,同时考虑了特征数量。此外,为了使粒子群优化算法更快地找到最优解,避免搜索陷入局部最优解,在PSO中采用混沌概念,引入了时变惯性权重和时变加速度系数。通过使用NSL-KDD数据集进行实验,评估了所提出方法的性能,该数据集是从著名的KDD cup 99数据集衍生和修改的。实验结果表明,与使用所有功能获得的结果相比,该方法具有较高的检测率和较低的误报率。 (C)2016 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2016年第26期|90-102|共13页
  • 作者单位

    Univ Chinese Acad Sci, Key Lab Big Data Min & Knowledge Management, Beijing 10090, Peoples R China|Univ Chinese Acad Sci, Sch Econ & Management, Beijing 10090, Peoples R China;

    Univ Chinese Acad Sci, Key Lab Big Data Min & Knowledge Management, Beijing 10090, Peoples R China;

    Univ Chinese Acad Sci, Key Lab Big Data Min & Knowledge Management, Beijing 10090, Peoples R China;

    Univ Chinese Acad Sci, Key Lab Big Data Min & Knowledge Management, Beijing 10090, Peoples R China|Univ Chinese Acad Sci, Sch Econ & Management, Beijing 10090, Peoples R China|Univ Nebraska, Coll Informat Sci & Technol, Omaha, NE 68182 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Intrusion detection; Support vector machine; Parameter setting; Feature selection;

    机译:入侵检测;支持向量机;参数设置;功能选择;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号