机译:时变混沌粒子群算法优化的基于MCLP / SVM的有效入侵检测框架
Univ Chinese Acad Sci, Key Lab Big Data Min & Knowledge Management, Beijing 10090, Peoples R China|Univ Chinese Acad Sci, Sch Econ & Management, Beijing 10090, Peoples R China;
Univ Chinese Acad Sci, Key Lab Big Data Min & Knowledge Management, Beijing 10090, Peoples R China;
Univ Chinese Acad Sci, Key Lab Big Data Min & Knowledge Management, Beijing 10090, Peoples R China;
Univ Chinese Acad Sci, Key Lab Big Data Min & Knowledge Management, Beijing 10090, Peoples R China|Univ Chinese Acad Sci, Sch Econ & Management, Beijing 10090, Peoples R China|Univ Nebraska, Coll Informat Sci & Technol, Omaha, NE 68182 USA;
Intrusion detection; Support vector machine; Parameter setting; Feature selection;
机译:具有粒子群优化的多类别分类MCLP模型用于网络入侵检测
机译:异常使用SVM和C4.5分类的异常入侵检测,具有改进的粒子群优化(I-PSO)
机译:结合核主成分分析和改进的混沌粒子群算法的入侵检测新SVM
机译:基于KPCA on6的成本预测建模框架研究;支持向量机和粒子群优化联合优化方法
机译:基于文化的粒子群优化框架,用于约束动态多目标优化。
机译:基于粒子群优化的蓝牙混沌同步及其在图像加密中的应用
机译:基于混沌粒子群优化算法的动态成本敏感SVM分类研究