首页> 外文期刊>Neurocomputing >Fault detection, for nonlinear networked systems based on quantization and dropout compensation: An interval type-2 fuzzy-model method
【24h】

Fault detection, for nonlinear networked systems based on quantization and dropout compensation: An interval type-2 fuzzy-model method

机译:基于量化和丢包补偿的非线性网络系统故障检测:区间2型模糊模型方法

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates the problem of filter-based fault detection for a class of nonlinear networked systems subject to parameter uncertainties in the framework of the interval type-2 (IT2) T-S fuzzy model-based approach. The Bernoulli random distribution process and logarithm quantizer are used to describe the measurement loss and signals quantization, respectively. In the framework of the IT2 T-S fuzzy model, the parameter uncertainty is handled by the membership functions with lower and upper bounds. A novel IT2 fault detection filter is designed to guarantee the residual system to be stochastically stable and satisfy the predefined H-infinity performance. It should be mentioned that the proposed filter does not use the same premise variables, number of fuzzy rules and membership functions as the fuzzy model, which will lead to more flexible design. Finally, two illustrative examples are provided to demonstrate the usefulness of the approach proposed in this paper. (C) 2016 Elsevier B.V. All rights reserved.
机译:本文研究了基于区间2型(IT2)T-S模糊模型方法的一类具有参数不确定性的非线性网络系统的基于滤波器的故障检测问题。伯努利随机分布过程和对数量化器分别用于描述测量损耗和信号量化。在IT2 T-S模糊模型的框架中,参数不确定性由上下界的隶属函数处理。设计了一种新颖的IT2故障检测滤波器,以确保残留系统随机稳定并满足预定义的H-无穷大性能。应该提到的是,所提出的滤波器没有使用与模糊模型相同的前提变量,模糊规则数量和隶属函数,这将导致更灵活的设计。最后,提供了两个说明性示例来证明本文提出的方法的有用性。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号