首页> 外文期刊>Neurocomputing >An exploration of improving prediction accuracy by constructing a multi-type clustering based recommendation framework
【24h】

An exploration of improving prediction accuracy by constructing a multi-type clustering based recommendation framework

机译:通过构建基于多类型聚类的推荐框架来提高预测准确性的探索

获取原文
获取原文并翻译 | 示例

摘要

Existing clustering-based recommendation methods generally focus on the clustering of users, items or social trust relationships. Although demonstrated to be efficient and scalable to large-scale datasets, these methods are sensitive to the quality of clustering and still suffer from the problem of low accuracy. In order to solve this issue, in this paper, we propose a multi-type clustering based recommendation framework which systematically considers the trust-based user clustering, similarity-based user clustering and similarity-based item clustering to further improve the recommendation accuracy. A SVD (Singular Value Decomposition) signs-based community mining method is utilized to process the trust and distrust matrix in order to discover the trust-based user clusters. The PLSA (Probabilistic Latent Semantic Analysis)-based model is employed to explore the similarity-based user and item clusters. Then a clustering-based trust regularization term is, proposed to incorporate the trust-based user clusters into the matrix factorization model. Comparative experiments on two real-world datasets demonstrate that our approach can better address the issues of data sparsity and cold start, and outperforms other stateof-the-art methods in terms of RMSE and MAE. (C) 2016 Elsevier B.V. All rights reserved.
机译:现有的基于聚类的推荐方法通常集中于用户,项目或社会信任关系的聚类。尽管已证明对大型数据集有效且可扩展,但这些方法对聚类的质量敏感,并且仍然存在准确性低的问题。为了解决这个问题,本文提出了一种基于多类型聚类的推荐框架,系统地考虑了基于信任的用户聚类,基于相似度的用户聚类和基于相似度的项目聚类,以进一步提高推荐的准确性。利用基于奇异值分解(SVD)符号的社区挖掘方法来处理信任和不信任矩阵,以发现基于信任的用户群。基于PLSA(概率潜在语义分析)的模型用于探索基于相似度的用户和项目集群。然后,提出了一个基于聚类的信任正则化项,将基于信任的用户聚类纳入矩阵分解模型。在两个真实世界的数据集上进行的比较实验表明,我们的方法可以更好地解决数据稀疏和冷启动的问题,并且在RMSE和MAE方面优于其他最新方法。 (C)2016 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2016年第26期|388-397|共10页
  • 作者单位

    Huazhong Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan 430074, Peoples R China;

    Huazhong Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan 430074, Peoples R China;

    Huazhong Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan 430074, Peoples R China;

    Huazhong Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan 430074, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Recommender Systems; Multi-type Clustering; Social Trust Relationships; Collaborative Filtering;

    机译:推荐系统;多类型聚类;社会信任关系;协同过滤;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号