首页> 外文期刊>Neurocomputing >An empirical convolutional neural network approach for semantic relation classification
【24h】

An empirical convolutional neural network approach for semantic relation classification

机译:基于经验卷积神经网络的语义关系分类方法

获取原文
获取原文并翻译 | 示例

摘要

In industry, relation classification plays a significant role in today's search engine. Up to now, the state-of-the-art systems have the problems of over-reliance on the quality of handcrafted features annotated by experts and linguistic knowledge derived from linguistic analysis modules, which is costly and leads to the issue of error propagation. Currently, with the data-driven approaches attracting wide attention, deep learning achieves impressive performance in semantic processing tasks without much effort on costly features. In this work, we deal with the relation classification task utilizing a convolutional neural network (CNN) approach to automatically control feature learning from raw sentences and minimize the application of external toolkits and resources. Our proposed method has several distinct features. First, we exploit a simple but rational way to specify which input tokens are the target nominals in the input sentence, instead of Position Feature that used in other neural network relation classification systems. Secondly, a most suitable dropout strategy is used to prevent units in the neural network from co-adapting too much, which significantly reduces over-fitting and improves the performance. Eventually, using only word embedding as input features is sufficient to achieve desirable performance. Our experiments on the SemEval-2010 Task-8 dataset show that our CNN architecture without using any additional extracted features significantly outperforms the state-of-the-art systems and achieves an F1-score of 84.8% only considering the context between the two target nominals. (C) 2016 Elsevier B.V. All rights reserved.
机译:在行业中,关系分类在当今的搜索引擎中扮演着重要的角色。迄今为止,最先进的系统存在过分依赖专家注释的手工制作特征的质量以及从语言分析模块获得的语言知识的问题,这是昂贵的,并导致错误传播的问题。当前,由于数据驱动的方法引起了广泛的关注,深度学习在语义处理任务中实现了令人印象深刻的性能,而无需花费很多精力在昂贵的功能上。在这项工作中,我们使用卷积神经网络(CNN)方法处理关系分类任务,以自动控制原始句子中的特征学习,并最大程度地减少外部工具包和资源的应用。我们提出的方法具有几个明显的特点。首先,我们采用一种简单而合理的方法来指定哪些输入标记是输入句子中的目标名词,而不是其他神经网络关系分类系统中使用的位置特征。其次,使用一种最合适的辍学策略来防止神经网络中的单元过多地相互适应,从而显着减少了过度拟合并提高了性能。最终,仅使用词嵌入作为输入特征就足以实现所需的性能。我们在SemEval-2010 Task-8数据集上进行的实验表明,我们的CNN架构在不使用任何其他提取特征的情况下,显着优于最新系统,仅考虑两个目标之间的上下文,其F1分数就达到了84.8%。名义上的。 (C)2016 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2016年第19期|1-9|共9页
  • 作者

    Qin Pengda; Xu Weiran; Guo Jun;

  • 作者单位

    Beijing Univ Posts & Telecommun, Sch Informat & Commun Engn, Beijing 100876, Peoples R China;

    Beijing Univ Posts & Telecommun, Sch Informat & Commun Engn, Beijing 100876, Peoples R China;

    Beijing Univ Posts & Telecommun, Sch Informat & Commun Engn, Beijing 100876, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Relation classification; Convolution neural network; Dropout; Data-driven;

    机译:关系分类;卷积神经网络;下降;数据驱动;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号