首页> 外文期刊>Neurocomputing >Dempster Shafer theory-based robust least squares support vector machine for stochastic modelling
【24h】

Dempster Shafer theory-based robust least squares support vector machine for stochastic modelling

机译:基于Dempster Shafer理论的鲁棒最小二乘支持向量机的随机建模

获取原文
获取原文并翻译 | 示例

摘要

Noise can be produced from various types of sources with different spectral distributions. This often causes the least squares support vector machine (LS-SVM) to be less effective since the LS-SVM is sensitive to noisy data. In this work, a Dempster-Shafer (D-S) theory-based robust LS-SVM is proposed, which has a more reliable modelling performance under various noise regimes. A distributed LS-SVM is first developed to construct the evidence data set. Fuzzy clustering is then used to construct an evidence base from the data. D-S theory is further used to fuse different pieces of evidence to derive the parameters for the construction of a robust LS-SVM. This robust model can represent the original system well even in the presence of different types of random noise. Case studies are presented to demonstrate the effectiveness of the proposed LS-SVM approach. (C) 2015 Elsevier B.V. All rights reserved.
机译:噪声可能是由具有不同频谱分布的各种类型的源产生的。这通常会导致最小二乘支持向量机(LS-SVM)的效率降低,因为LS-SVM对嘈杂的数据敏感。在这项工作中,提出了一种基于Dempster-Shafer(D-S)理论的鲁棒LS-SVM,该模型在各种噪声情况下均具有更可靠的建模性能。首先开发了分布式LS-SVM来构建证据数据集。然后使用模糊聚类从数据构建证据基础。 D-S理论进一步用于融合不同的证据,以得出用于构建健壮的LS-SVM的参数。即使在存在不同类型的随机噪声的情况下,这种鲁棒的模型也可以很好地表示原始系统。案例研究表明了所提出的LS-SVM方法的有效性。 (C)2015 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2016年第19期|145-153|共9页
  • 作者单位

    Cent S Univ, State Key Lab High Performance Complex Mfg, Sch Mech & Elect Engn, Changsha 410083, Hunan, Peoples R China;

    Cent S Univ, State Key Lab High Performance Complex Mfg, Sch Mech & Elect Engn, Changsha 410083, Hunan, Peoples R China;

    Cent S Univ, State Key Lab High Performance Complex Mfg, Sch Mech & Elect Engn, Changsha 410083, Hunan, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Modelling; LS-SVM; D-S theory; Robustness; Noise; Fuzzy clustering;

    机译:建模;LS-SVM;D-S理论;鲁棒性;噪声;模糊聚类;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号