首页> 外文期刊>Neurocomputing >Motion-compensated frame interpolation with weighted motion estimation and hierarchical vector refinement
【24h】

Motion-compensated frame interpolation with weighted motion estimation and hierarchical vector refinement

机译:运动补偿帧插值,具有加权运动估计和分层矢量细化

获取原文
获取原文并翻译 | 示例

摘要

Large amounts of data have been gathered by techniques such as mobile devices, remote sensing and cameras. With the rapid development of high-definition digital TV and multimedia information systems, motion-compensated frame interpolation (MCFI) has become a widely used tactic for frame rate up conversion (FRUC) to improve the visual property of video. In this paper, we propose a novel MCFI algorithm based on weighted motion estimation (Weighted ME), motion vector (MV) segmentation, and hierarchical vector refinement. We first present an MV clustering based on the Weighted ME to obtain more accurate MVs and partition a frame into moving areas and background. To capture scene changes, we then apply a hierarchical vector refinement scheme to the moving areas that consists of three steps: pre-screening, reclassification, and smoothing. In this scheme, we use an overlapped block ME (OBME) method that uses multi-candidate pre-screening to discover unreliable MVs and protect the moving area edge structures from being damaged. We then employ the bidirectional prediction difference (BPD) to identify outliers using strong correlation with adjacent blocks. Meanwhile, an adaptive vector median filter (AVMF) is adopted to refine the block size, which can effectively smooth blocking artifacts and ghost effects. Experiments show the algorithm achieves a high image quality both subjectively and objectively. In particular, it has a good adaptability in video sequences with fast motion and complex backgrounds. (C) 2015 Elsevier B.V. All rights reserved.
机译:通过移动设备,遥感和相机等技术已经收集了大量数据。随着高清数字电视和多媒体信息系统的飞速发展,运动补偿帧插值(MCFI)已成为帧率上转换(FRUC)改善视频视觉特性的一种广泛使用的策略。在本文中,我们提出了一种基于加权运动估计(加权ME),运动矢量(MV)分割和分层矢量细化的新型MCFI算法。我们首先提出基于加权ME的MV聚类,以获得更准确的MV,并将帧分为运动区域和背景。为了捕获场景变化,我们然后将分层矢量细化方案应用于移动区域,该方案包括三个步骤:预筛选,重新分类和平滑。在该方案中,我们使用重叠块ME(OBME)方法,该方法使用多候选者预筛选来发现不可靠的MV,并保护移动区域边缘结构免遭损坏。然后,我们使用双向预测差异(BPD)使用与相邻块的强相关性来识别异常值。同时,采用自适应矢量中值滤波器(AVMF)细化块大小,可以有效地平滑块伪影和重影效果。实验表明,该算法在主观和客观上均达到了较高的图像质量。特别地,它在具有快速运动和复杂背景的视频序列中具有良好的适应性。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号