首页> 外文期刊>Neurocomputing >Mixed noise removal based on a novel non-parametric Bayesian sparse outlier model
【24h】

Mixed noise removal based on a novel non-parametric Bayesian sparse outlier model

机译:基于新型非参数贝叶斯稀疏离群模型的混合噪声去除

获取原文
获取原文并翻译 | 示例

摘要

We develop a novel non-parametric Bayesian sparse outlier model for the problem of Mixed noise removal. Based on the assumptions of sparse data and isolated outliers, the proposed model is considered for decomposing the observed data into three components of ideal data, Gaussian noise and outlier noise. Then the spike-slab prior is employed for outlier noise and sparse coefficients of ideal data. The proposed method can automatically infer noise statistics (e.g., Gaussian noise variance) from the training data without changing model hyper-parameter settings. It is also robust to initialization without using adaptive median filter as in other denoising methods. Experimental results demonstrate proposed model can achieve better objective and subjective performances on mixed noise removal than other state-of-the-art methods. (C) 2015 Elsevier B.V. All rights reserved.
机译:我们针对混合噪声去除问题开发了一种新颖的非参数贝叶斯稀疏离群模型。基于稀疏数据和孤立离群值的假设,考虑将提出的模型用于将观测数据分解为理想数据的三个分量,即高斯噪声和离群值噪声。然后使用尖峰平板先验来获得理想数据的离群噪声和稀疏系数。所提出的方法可以从训练数据自动推断噪声统计量(例如,高斯噪声方差),而无需改变模型超参数设置。在不使用像其他降噪方法那样使用自适应中值滤波器的情况下,初始化也很健壮。实验结果表明,与其他最新方法相比,该模型在混合噪声去除方面可以实现更好的客观和主观性能。 (C)2015 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2016年第22期|858-865|共8页
  • 作者单位

    Xiamen Univ, Sch Informat Sci & Engn, Fujian Key Lab Sensing & Comp Smart City, Xiamen, Peoples R China;

    Xiamen Univ, Sch Informat Sci & Engn, Fujian Key Lab Sensing & Comp Smart City, Xiamen, Peoples R China;

    Xiamen Univ, Sch Informat Sci & Engn, Fujian Key Lab Sensing & Comp Smart City, Xiamen, Peoples R China;

    Xiamen Univ, Sch Informat Sci & Engn, Fujian Key Lab Sensing & Comp Smart City, Xiamen, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Mixed noise removal; Non-parametric Bayesian model; Spike-slab; Automatic parameter estimation;

    机译:混合噪声去除;非参数贝叶斯模型;钉板;参数自动估计;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号