首页> 外文期刊>Neurocomputing >A novel features ranking metric with application to scalable visual and bioinformatics data classification
【24h】

A novel features ranking metric with application to scalable visual and bioinformatics data classification

机译:一种新颖的功能等级度量标准,可应用于可扩展的视觉和生物信息学数据分类

获取原文
获取原文并翻译 | 示例

摘要

Coming with the big data era, the filtering of uninformative data becomes emerging. To this end, ranking the high dimensionality features plays an important role. However, most of the state-of-art methods focus on improving the classification accuracy while the stability of the dimensionality reduction is simply ignored. In this paper, we proposed a Max-Relevance-Max-Distance (MRMD) feature ranking method, which balances accuracy and stability of feature ranking and prediction task. In order to prove the effectiveness on big data, we tested our method on two different datasets. The first one is image classification, which is a benchmark dataset with high dimensionality, while the second one is protein-protein interaction prediction data, which comes from our previous private research and has massive instances. Experiments prove that our method maintained the accuracy together with the stability on both two big datasets. Moreover, our method runs faster than other filtering and wrapping methods, such as mRMR and Information Gain. (C) 2015 Elsevier B.V. All rights reserved.
机译:随着大数据时代的到来,对非信息性数据的过滤正在兴起。为此,对高维特征进行排名起着重要作用。但是,大多数最新方法集中在提高分类准确性上,而维数缩减的稳定性却被忽略了。在本文中,我们提出了一种最大相关度-最大距离(MRMD)特征分级方法,该方法平衡了特征分级和预测任务的准确性和稳定性。为了证明对大数据的有效性,我们在两个不同的数据集上测试了我们的方法。第一个是图像分类,它是具有高维的基准数据集,而第二个是蛋白质-蛋白质相互作用预测数据,该数据来自我们之前的私人研究并有大量实例。实验证明,我们的方法在两个大数据集上都保持了准确性和稳定性。而且,我们的方法比mRMR和Information Gain等其他过滤和包装方法运行更快。 (C)2015 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2016年第2期|346-354|共9页
  • 作者单位

    Xiamen Univ, Sch Informat Sci & Technol, Xiamen, Fujian, Peoples R China|Tianjin Univ, Sch Comp Sci & Technol, Tianjin 300072, Peoples R China;

    Xiamen Univ, Sch Informat Sci & Technol, Xiamen, Fujian, Peoples R China;

    Xiamen Univ, Sch Informat Sci & Technol, Xiamen, Fujian, Peoples R China;

    Xiamen Univ, Sch Informat Sci & Technol, Xiamen, Fujian, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Dimensionality reduction; Protein-protein interaction; Image classification; Feature ranking;

    机译:降维;蛋白质-蛋白质相互作用;图像分类;特征排名;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号