首页> 外文期刊>Neurocomputing >Robust head pose estimation using Dirichlet-tree distribution enhanced random forests
【24h】

Robust head pose estimation using Dirichlet-tree distribution enhanced random forests

机译:使用Dirichlet树分布增强的随机森林进行稳健的头部姿态估计

获取原文
获取原文并翻译 | 示例

摘要

Head pose estimation (HPE) is important in human-machine interfaces. However, various illumination, occlusion, low image resolution and wide scene make the estimation task difficult. Hence, a Dirichlet-tree distribution enhanced Random Forests approach (D-RF) is proposed in this paper to estimate head pose efficiently and robustly in unconstrained environment. First, positiveegative facial patch is classified to eliminate influence of noise and occlusion. Then, the D-RF is proposed to estimate the head pose in a coarse-to-fine way using more powerful combined texture and geometric features of the classified positive patches. Furthermore, multiple probabilistic models have been learned in the leaves of the D-RF and a composite weighted voting method is introduced to improve the discrimination capability of the approach. Experiments have been done on three standard databases including two public databases and our lab database with head pose spanning from -90 degrees to 90 degrees in vertical and horizontal directions under various conditions, the average accuracy rate reaches 762% with 25 classes. The proposed approach has also been evaluated with the low resolution database collected from an overhead camera in a classroom, the average accuracy rate reaches 80.5% with 15 classes. The encouraging results suggest a strong potential for head pose and attention estimation in unconstrained environment. (C) 2015 Elsevier B.V. All rights reserved.
机译:头部姿势估计(HPE)在人机界面中很重要。然而,各种照明,遮挡,低图像分辨率和宽广的场景使得估计任务变得困难。因此,本文提出了一种Dirichlet树分布增强的随机森林方法(D-RF),以在不受约束的环境中有效且鲁棒地估计头部姿势。首先,对正/负面部贴片进行分类,以消除噪音和遮挡的影响。然后,提出了D-RF,使用分类后的正片的更强大的组合纹理和几何特征,以从粗到精的方式估计头部姿势。此外,已经在D-RF的叶子中学习了多种概率模型,并且引入了复合加权投票方法以提高该方法的辨别能力。已经在三个标准数据库上进行了实验,包括两个公共数据库和我们的实验室数据库,在不同条件下,其头部姿态在垂直和水平方向上的范围从-90度到90度,平均准确率在25类下达到762%。从教室的高架摄像机收集的低分辨率数据库中,还对所提出的方法进行了评估,在15个班级中,平均准确率达到80.5%。令人鼓舞的结果表明,在不受限制的环境中,头部姿势和注意力估计的潜力很大。 (C)2015 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2016年第1期|42-53|共12页
  • 作者单位

    Cent China Normal Univ, Natl Engn Res Ctr E Learning, Wuhan, Peoples R China|Wenhua Coll, Wuhan, Peoples R China;

    Cent China Normal Univ, Natl Engn Res Ctr E Learning, Wuhan, Peoples R China;

    Cent China Normal Univ, Natl Engn Res Ctr E Learning, Wuhan, Peoples R China;

    Cent China Normal Univ, Natl Engn Res Ctr E Learning, Wuhan, Peoples R China;

    Cent China Normal Univ, Natl Engn Res Ctr E Learning, Wuhan, Peoples R China;

    Cent China Normal Univ, Natl Engn Res Ctr E Learning, Wuhan, Peoples R China;

    Cent China Normal Univ, Natl Engn Res Ctr E Learning, Wuhan, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    D-RF; HPE; Combined texture; Geometric features; Patch classification; Composite weighted voting;

    机译:D-RF;HPE;组合纹理;几何特征;补丁分类;综合加权投票;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号