首页> 外文期刊>Neurocomputing >Distributed content filtering algorithm based on data label and policy expression in active distribution networks
【24h】

Distributed content filtering algorithm based on data label and policy expression in active distribution networks

机译:主动配电网中基于数据标签和策略表达的分布式内容过滤算法

获取原文
获取原文并翻译 | 示例

摘要

With the development of active distribution networks, data transmission is facing a severe security challenge. Secure data transmission is crucial for the real-time and exact control of active distribution networks. However, traditional data encryption methods have difficulty with the real-time control and mass data transmission of the active distribution networks. Additionally, content filtering based on text classification has a strong dependence on the size and type of data. To solve these problems, this paper proposes a novel distributed content filtering algorithm based on data labeling and policy expression (DCF-DLPE). In DCF-DLPE, we design a secure private protocol with data labeling and build a policy rule expression. Four representative datasets are used to evaluate the performance of the proposed algorithm. The comparative results show that for the larger dataset, DCF-DLPE outperforms the DES, AES (256-bit) and Blowfish encryption methods in the average time-consumption. Experimental results also show that compared with text classification algorithms, DCF-DLPE has a clear advantage in terms of filtering accuracy, sensitivity and precision. It is more important that, compared with text classification algorithms, performance of the DCF-DLPE algorithm is independent of the size and type of the dataset. (C) 2017 Elsevier B.V. All rights reserved.
机译:随着有源配电网的发展,数据传输面临着严峻的安全挑战。安全的数据传输对于实时有效地控制有源配电网络至关重要。然而,传统的数据加密方法在主动配电网络的实时控制和海量数据传输方面存在困难。此外,基于文本分类的内容过滤对数据的大小和类型有很大的依赖性。为了解决这些问题,本文提出了一种新的基于数据标记和策略表达的分布式内容过滤算法(DCF-DLPE)。在DCF-DLPE中,我们设计了带有数据标签的安全专用协议,并构建了策略规则表达式。使用四个代表性数据集来评估所提出算法的性能。比较结果表明,对于较大的数据集,在平均时间消耗上,DCF-DLPE优于DES,AES(256位)和Blowfish加密方法。实验结果还表明,与文本分类算法相比,DCF-DLPE在过滤精度,灵敏度和精度方面具有明显的优势。与文本分类算法相比,更重要的是,DCF-DLPE算法的性能与数据集的大小和类型无关。 (C)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2017年第deca27期|159-169|共11页
  • 作者单位

    Nanjing Univ Posts & Telecommun, Inst Adv Technol, Nanjing 210003, Jiangsu, Peoples R China;

    Nanjing Univ Posts & Telecommun, Inst Adv Technol, Nanjing 210003, Jiangsu, Peoples R China;

    Global Energy Interconnect Res Inst, Beijing 102209, Peoples R China;

    Nanjing Univ Posts & Telecommun, Sch Comp, Nanjing 210003, Jiangsu, Peoples R China;

    Nanjing Univ, Int Inst Earth Syst Sci, Nanjing 210093, Jiangsu, Peoples R China;

    Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing 210044, Jiangsu, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Active distribution networks; Data label; Policy expression; Content filtering;

    机译:主动分配网络;数据标签;策略表达;内容过滤;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号