首页> 外文期刊>Neurocomputing >Class-specific cost regulation extreme learning machine for imbalanced classification
【24h】

Class-specific cost regulation extreme learning machine for imbalanced classification

机译:用于不平衡分类的特定于类别的成本调节极限学习机

获取原文
获取原文并翻译 | 示例

摘要

Due to its much faster speed and better generalization performance, extreme learning machine (ELM) has attracted much attention as an effective learning approach. However, ELM rarely involves strategies for imbalanced data distributions which may exist in many fields. Existing approaches for imbalance learning only consider the effect of the number of the class samples ignoring the dispersion degree of the data, and may lead to the suboptimal learning results. In this paper, we will propose a novel ELM, class-specific cost regulation extreme learning machine (CCR-ELM), together with its kernel based extension, for binary and multiclass classification problems with imbalanced data distributions. CCR-ELM introduces class-specific regulation cost for misclassification of each class in the performance index as the tradeoff of structural risk and empirical risk. The performance of CCR-ELM is verified using a number of benchmark datasets and the real blast furnace status diagnosis problem. Experimental results show that CCR-ELM can achieve better performance for classification problems with imbalanced data distributions than the original ELM and existing ELM imbalance learning approach, and the kernel based CCR-ELM can improve the performance further. (C) 2017 Elsevier B.V. All rights reserved.
机译:由于其更快的速度和更好的泛化性能,极限学习机(ELM)作为一种有效的学习方法已引起了广泛的关注。但是,ELM很少涉及许多领域中可能存在的数据分布不平衡的策略。现有的不平衡学习方法仅考虑分类样本数量的影响而忽略了数据的分散程度,可能导致学习效果欠佳。在本文中,我们将提出一种新颖的ELM,特定于类的成本调节极限学习机(CCR-ELM)及其基于内核的扩展,用于数据分布不平衡的二进制和多类分类问题。 CCR-ELM引入了特定于类别的法规成本,以将绩效指数中的每个类别错误分类为结构风险和经验风险的权衡。使用许多基准数据集和实际的高炉状态诊断问题验证了CCR-ELM的性能。实验结果表明,与原始的ELM和现有的ELM不平衡学习方法相比,CCR-ELM可以更好地解决数据分布不平衡的分类问题,而基于内核的CCR-ELM可以进一步提高性能。 (C)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2017年第25期|70-82|共13页
  • 作者单位

    Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing 100083, Peoples R China|Minist Educ, Key Lab Adv Control Iron & Steel Proc, Beijing 100083, Peoples R China;

    Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing 100083, Peoples R China|Minist Educ, Key Lab Adv Control Iron & Steel Proc, Beijing 100083, Peoples R China;

    Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing 100083, Peoples R China|Minist Educ, Key Lab Adv Control Iron & Steel Proc, Beijing 100083, Peoples R China;

    Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing 100083, Peoples R China|Minist Educ, Key Lab Adv Control Iron & Steel Proc, Beijing 100083, Peoples R China;

    Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing 100083, Peoples R China|Minist Educ, Key Lab Adv Control Iron & Steel Proc, Beijing 100083, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Extreme learning machine; Imbalanced data distribution; Class-specific cost regulation extreme; learning machine; Blast furnace status diagnosis;

    机译:极限学习机;数据分配不均衡;针对特定类别的成本调节极限;学习机;高炉状态诊断;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号