首页> 外文期刊>Neurocomputing >Graph classification based on sparse graph feature selection and extreme learning machine
【24h】

Graph classification based on sparse graph feature selection and extreme learning machine

机译:基于稀疏图特征选择和极限学习机的图分类

获取原文
获取原文并翻译 | 示例

摘要

Identification and classification of graph data is a hot research issue in pattern recognition. The conventional methods of graph classification usually convert the graph data to the vector representation and then using SVM to be a classifier. These methods ignore the sparsity of graph data, and with the increase of the input sample, the storage and computation of the kernel matrix will cost a lot of memory and time. In this paper, we propose a new graph classification algorithm called graph classification based on sparse graph feature selection and extreme learning machine. The key of our method is using the lasso to select features because of the sparsity of graph data, and extreme learning machine (ELM) is introduced to the following classification task due to its good performance. Extensive experimental results on a series of benchmark graph data sets validate the effectiveness of the proposed methods. (C) 2017 Published by Elsevier B.V.
机译:图形数据的识别和分类是模式识别中的一个热门研究问题。传统的图分类方法通常将图数据转换为矢量表示形式,然后使用SVM作为分类器。这些方法忽略了图数据的稀疏性,并且随着输入样本的增加,内核矩阵的存储和计算将花费大量的内存和时间。本文提出了一种基于稀疏图特征选择和极限学习机的图分类算法。我们的方法的关键是由于图形数据的稀疏性而使用套索来选择特征,而极限学习机(ELM)由于其良好的性能而被引入到以下分类任务中。在一系列基准图数据集上的大量实验结果验证了所提出方法的有效性。 (C)2017由Elsevier B.V.发布

著录项

  • 来源
    《Neurocomputing》 |2017年第25期|20-27|共8页
  • 作者单位

    PLA Univ Sci & Technol, Coll Command Informat Syst, Nanjing 210007, Jiangsu, Peoples R China;

    PLA Univ Sci & Technol, Coll Command Informat Syst, Nanjing 210007, Jiangsu, Peoples R China;

    PLA Univ Sci & Technol, Coll Command Informat Syst, Nanjing 210007, Jiangsu, Peoples R China;

    PLA Univ Sci & Technol, Coll Command Informat Syst, Nanjing 210007, Jiangsu, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Graph kernel; Graph classification; Extreme learning machine; Lasso;

    机译:图核;图分类;极限学习机;套索;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号