首页> 外文期刊>Neurocomputing >Synergistic integration of graph-cut and cloud model strategies for image segmentation
【24h】

Synergistic integration of graph-cut and cloud model strategies for image segmentation

机译:图割和云模型策略的协同集成用于图像分割

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a new graph cut image partitioning method that calculates image data using cloud model for constructing the objective functions (GC-CM). In the objective function, it contains a boundary preserving smooth term and a data item which evaluates the deviation of each pixel that belongs to different regions. The core method models the foreground object and background of the images as cloud models by the back cloud generator. The data item is calculated with the X-condition cloud generator. We use the membership degree between each pixel to calculate the similarity of the neighbor pixel established as the smooth term. The energy minimization is completed with the minimum cut theory and the graph cut iterations. In contrast to segmentation results with discontinuous edges using conventional graph cut method, this method has better generality and accuracy. Experiments on different data sets including natural images from Berkeley database, synthetic data, and medical images suggest that the proposed method based on cloud model and graph cuts outperforms other state-of-the-art approaches. (c) 2017 Elsevier B.V. All rights reserved.
机译:本文提出了一种新的图割图像分割方法,该方法使用云模型计算图像数据以构建目标函数(GC-CM)。在目标函数中,它包含一个边界保留平滑项和一个数据项,该数据项评估属于不同区域的每个像素的偏差。核心方法通过后云生成器将图像的前景对象和背景建模为云模型。数据项是使用X条件云生成器计算的。我们使用每个像素之间的隶属度来计算建立为平滑项的相邻像素的相似度。最小切割理论和图形切割迭代完成了能量的最小化。与使用常规图形切割方法对不连续边缘进行分割的结果相比,此方法具有更好的通用性和准确性。对包括伯克利数据库中的自然图像,合成数据和医学图像在内的不同数据集进行的实验表明,基于云模型和图割的建议方法优于其他最新方法。 (c)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2017年第27期|37-46|共10页
  • 作者单位

    Chongqing Univ Posts & Telecommun, Chongqing Key Lab Computat Intelligence, Chongqing 400065, Peoples R China;

    Chongqing Univ Posts & Telecommun, Chongqing Key Lab Computat Intelligence, Chongqing 400065, Peoples R China;

    Chongqing Univ Posts & Telecommun, Chongqing Key Lab Computat Intelligence, Chongqing 400065, Peoples R China;

    Chongqing Univ Posts & Telecommun, Chongqing Key Lab Computat Intelligence, Chongqing 400065, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Image segmentation; Cloud model; Graph cut; Energy optimization;

    机译:图像分割;云模型;图形切割;能量优化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号