首页> 外文期刊>Neurocomputing >Multi-attribute statistics histograms for accurate and robust pairwise registration of range images
【24h】

Multi-attribute statistics histograms for accurate and robust pairwise registration of range images

机译:多属性统计直方图,可对范围图像进行准确而稳健的成对配准

获取原文
获取原文并翻译 | 示例

摘要

Registration of range images based on local shape features is widely adopted due to its validated effectiveness and robustness, while most existing local shape descriptors struggle to simultaneously achieve a pleasurable and balanced performance in terms of distinctiveness, robustness and time efficiency. This paper proposes a novel representation of 3D local surfaces, called multi-attribute statistics histograms (MaSH), for automatic registration of range images. MaSH comprises both spatial and geometric information characterizations. The characterization of spatial information is achieved via radial partitions in the 3D local support volume around the keypoint based on a local reference axis (LRA), creating a set of subspaces. While the encoding the shape geometry is performed by calculating statistical histograms of multiple faint correlated geometric attributes (i.e., local depth, normal deviation, and surface variation angle) for each subspace, so as to achieve information complementarity. Then, a robust rigid transformation estimation algorithm named 2-point based sample consensus with global constrain (2SAC-GC) is presented to tackle the problem of calculating an optimal transformation from the correspondence set with outliers. Finally, a coarse-to-fine registration method based on MaSH and 2SAC-GC is proposed for aligning range images. Experiments on both high-resolution (Laser Scanner) and low-resolution (Kinect) datasets report that, our method achieves a registration accuracy of 90.36% and 80.39% on the two datasets, respectively. It also exhibits strong robustness against noise and varying mesh resolutions. Furthermore, feature matching experiments show the over-all superiority of the proposed MaSH descriptor against the state-of-the-arts including the spin image, snapshots, THRIFT, FPFH, RoPS, LFSH and RCS descriptors. (C) 2017 Elsevier B.V. All rights reserved.
机译:基于局部形状特征的距离图像配准由于其有效的有效性和鲁棒性而被广泛采用,而大多数现有的局部形状描述符在独特性,鲁棒性和时间效率方面都难以同时实现令人愉悦且平衡的性能。本文提出了一种新颖的3D局部表面表示方法,称为多属性统计直方图(MaSH),用于自动记录距离图像。 MaSH包含空间和几何信息特征。通过基于局部参考轴(LRA),围绕关键点的3D局部支撑体积中的径向分区来实现空间信息的表征,从而创建一组子空间。在对形状几何进行编码的同时,通过为每个子空间计算多个微弱相关的几何属性(即局部深度,法线偏差和表面变化角度)的统计直方图来执行,从而实现信息的互补性。然后,提出了一种鲁棒的刚性变换估计算法,该算法基于全局约束的基于两点的样本共识(2SAC-GC),解决了从具有异常值的对应集计算最优变换的问题。最后,提出了一种基于MaSH和2SAC-GC的粗到细配准方法,用于对准距离图像。在高分辨率(激光扫描仪)和低分辨率(Kinect)数据集上的实验均表明,我们的方法在两个数据集上分别实现了90.36%和80.39%的配准精度。它还对噪声和变化的网格分辨率具有很强的鲁棒性。此外,特征匹配实验表明,所提出的MaSH描述符相对于包括旋转图像,快照,THRIFT,FPFH,RoPS,LFSH和RCS描述符的最新技术具有总体优势。 (C)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2017年第16期|54-67|共14页
  • 作者单位

    Huazhong Univ Sci & Technol, Guangdong Prov Key Lab Digital Mfg Equipment, Educ Minist China,Guangdong HUST Ind Technol Res, Image Proc & Intelligent Control Key Lab,Sch Auto, Wuhan, Peoples R China;

    Huazhong Univ Sci & Technol, Guangdong Prov Key Lab Digital Mfg Equipment, Educ Minist China,Guangdong HUST Ind Technol Res, Image Proc & Intelligent Control Key Lab,Sch Auto, Wuhan, Peoples R China;

    Huazhong Univ Sci & Technol, Guangdong Prov Key Lab Digital Mfg Equipment, Educ Minist China,Guangdong HUST Ind Technol Res, Image Proc & Intelligent Control Key Lab,Sch Auto, Wuhan, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Local reference axis; Multi-attribute; Transformation estimation; Feature matching; Range image registration;

    机译:局部参考轴;多属性;变换估计;特征匹配;范围图像配准;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号