首页> 外文期刊>Neurocomputing >Class-specific object proposals re-ranking for object detection in automatic driving
【24h】

Class-specific object proposals re-ranking for object detection in automatic driving

机译:针对特定类别的对象建议重新排序,以在自动驾驶中检测对象

获取原文
获取原文并翻译 | 示例

摘要

Object proposal generation is an important step in object detection, obtaining high-quality proposals can effectively improve the performance of detection. In this paper, we propose a semantic, class-specific approach to re-rank object proposals, which can consistently improve the recall performance even with fewer proposals. Specifically, we first extract features for each proposal including semantic segmentation, stereo information, contextual information, CNN-based objectness and low-level cue, and then score them using class-specific weights learned by Structured SVM. The advantages of the proposed model are twofold: 1) it can be easily merged to existing generators with few computational costs, and 2) it can achieve high recall rate under strict critical even using fewer proposals. Experimental evaluation on the KITTI benchmark demonstrates that our approach significantly improves existing popular generators on recall performance. Moreover, in the experiment conducted for object detection, even with 1500 proposals, our approach can still have higher average precision (AP) than baselines with 5000 proposals. (C) 2017 Elsevier B.V. All rights reserved.
机译:对象提议的生成是对象检测的重要步骤,获取高质量的建议可以有效地提高检测性能。在本文中,我们提出了一种语义,特定于类的方法来对对象提议重新排序,即使提议更少,也可以持续提高召回性能。具体来说,我们首先为每个建议提取功能,包括语义分割,立体声信息,上下文信息,基于CNN的客观性和低级提示,然后使用结构化SVM学习的特定于类别的权重对其进行评分。所提出模型的优点有两个:1)可以很容易地以很少的计算成本将其合并到现有的生成器中; 2)即使使用更少的提议,也可以在严格的临界条件下实现较高的召回率。对KITTI基准的实验评估表明,我们的方法在召回性能方面显着改善了现有的流行生成器。此外,在进行对象检测的实验中,即使有1500个建议,我们的方法仍然比具有5000个建议的基线具有更高的平均精度(AP)。 (C)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2017年第14期|187-194|共8页
  • 作者单位

    Xiamen Univ, Dept Cognit Sci, Xiamen 361005, Fujian, Peoples R China;

    Xiamen Univ, Dept Cognit Sci, Xiamen 361005, Fujian, Peoples R China;

    Xiamen Univ, Dept Cognit Sci, Xiamen 361005, Fujian, Peoples R China;

    UNC Charlotte, Dept Comp Sci, Charlotte, NC 28223 USA;

    Xiamen Univ, Dept Cognit Sci, Xiamen 361005, Fujian, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Re-ranking; Object proposal; Object detection; CNN;

    机译:重排序目标提议目标检测CNN;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号